Contributors |
Wiki » History » Version 20
« Previous -
Version 20/45
(diff) -
Next » -
Current version
Vitor Chaud, 30 Apr 2014 14:57
Introduction¶
This project will contain examples of the Izhikevich spiking neuron model.
Installation¶
To get local clone of this project…
Versions of the project¶
The original model in MATLAB format has been converted to a number of other formats.
PyNN¶
Install PyNN. Preferably, use the latest v0.8 version from GitHub. Note: NEURON is the only supported simulator for this model at the moment.
Install Git and type:
> git clone https://github.com/OpenSourceBrain/IzhikevichModel.git > cd cd IzhikevichModel/PyNN/
To run a simulation type:
> python izhikevich2004.py neuron
NeuroML 2¶
…
The XML for an Izhikevich model in NeuroML v2.0 is below:
<code class="xml"> <izhikevichCell id="TonicSpiking" v0 = "-70mV" thresh = "30mV" a ="0.02" b = "0.2" c = "-65.0" d = "6" Iamp="0" Idel="0ms" Idur="2000ms"/></code>
For full examples of single cells see TonicSpiking or PhasicBursting
Tested with simulators: …
Comparison to original model behaviour¶
table{border:1px solid black}.
{background:#ddd}. |Model| Label | PyNN | NeuroML |
|Tonic spiking | A |(a) | (a) |
|Phasic spiking| B |(a) | (a) |
|Tonic bursting| C |(b) | (b) |
|Phasic bursting| D |(a) | (a) |
|Mixed mode| E |(a) | (a) |
|Spike freq. adapt.| F |(a) | (a) |
|Class 1 excitable| G |(d, e)| (a, e) |
|Class 2 excitable| H |(d)| © |
|Spike latency | I |(b)| (b) |
|Subthresh. osc.| J |(a)| (a) |
|Resonator| K |(a)| (a) |
|Integrator| L |(e)| (a, e) |
|Rebound spike| M |(a)| (a) |
|Rebound burst| N |(a)| (a) |
|Threshold variability| O |(a)| (a) |
|Bistability| P |(b)| (b) |
|Depolarizing after-potential| Q |(b)| (b) |
|Accomodation| R |(d)| (a, f)|
|Inhibition-induced spiking| S |(a)| ©|
|Inhibition-induced bursting| T |(b) | (b)|
(a) Same behaviour
(b) Similar behaviour when slightly modifying parameters
© Similar but not identical behaviour (different number of spikes in the stimulus time frame)
(d) Not yet implemented. Need ramp injected current. See https://github.com/NeuralEnsemble/PyNN/issues/257
(e) Requires an alternative model implementation since the model parameterization is different in the original Matlab code. In NeuroML new ComponentType generalizedIzhikevichCell was created.
(f) Requires an alternative model implementation since the model parameterization is different in the original Matlab code. In NeuroML new ComponentType accomodationIzhikevichCell was created.