Edit History

Known issues » History » Version 18

Helena Głąbska, 30 Apr 2014 14:57
some links with data + remark about running Fortran locally

1 1 Padraig Gleeson
Known issues with Traub et al 2005.
2 1 Padraig Gleeson
-----------------------------------
3 1 Padraig Gleeson
4 1 Padraig Gleeson
This is a quite complex and detailed model and as discussed in the [original paper](http://www.ncbi.nlm.nih.gov/pubmed/15525801?dopt=Abstract)
5 1 Padraig Gleeson
6 1 Padraig Gleeson
> Any model, even of a small bit of cortex, is subject to difficulties and hazards: limited data, large numbers of parameters, criticisms that models with complexity comparable to the modeled system cannot be scientifically useful, the expense and slowness of the necessary computations, and serious uncertainties as to how a complex model can be compared with experiment and shown to be predictive.
7 1 Padraig Gleeson
> The above difficulties and hazards are too real to be dismissed readily. In our opinion, the only way to proceed is through a state of denial that any of the difficulties need be fatal. The reader must then judge whether the results, preliminary as they must be, help our understanding.
8 1 Padraig Gleeson
9 1 Padraig Gleeson
Even the published Fortran version of this model was acknowledged to be incomplete. Each conversion of this model will deviate to a small or large extent from this version.
10 1 Padraig Gleeson
11 6 Padraig Gleeson
### Questions about physiological properties of model
12 6 Padraig Gleeson
13 6 Padraig Gleeson
**Dependence on Fast Regular Bursting cells for oscillatory behaviour**
14 6 Padraig Gleeson
15 6 Padraig Gleeson
**Prevalence of gap junctions**
16 6 Padraig Gleeson
17 6 Padraig Gleeson
**High current threshold for deep pyramidal firing**
18 6 Padraig Gleeson
19 6 Padraig Gleeson
**Not tested with external synaptic input**
20 6 Padraig Gleeson
21 1 Padraig Gleeson
### Limitations of the conversion of the model to NEURON
22 1 Padraig Gleeson
23 1 Padraig Gleeson
It is useful to read the [notes on conversion of this model to NEURON from Fortran](http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=82894&file=\nrntraub\README) by Tom Morse and Michael Hines
24 1 Padraig Gleeson
25 7 Helena Głąbska
**Slightly different method of running the simulation** (e.g. in Neuron information about spike is sent immediately, in Fortran every 0.1 ms )
26 7 Helena Głąbska
27 17 Helena Głąbska
**Sum of transmembrane currents in every single cells sums up to 0 only if you use cvode\_active\*
28 1 Padraig Gleeson
29 17 Helena Głąbska
**Diffrent behaviour of NMDA synapse when thalamus is disconnected\* (some bug in Fortran version?)
30 17 Helena Głąbska
31 7 Helena Głąbska
In Fortran code:
32 7 Helena Głąbska
33 7 Helena Głąbska
     z = 0.d0  ! thalamus disconnected
34 7 Helena Głąbska
     gAMPA_TCR_to_suppyrRS = z * gAMPA_TCR_to_suppyrRS
35 7 Helena Głąbska
     gNMDA_TCR_to_suppyrRS = z * gNMDA_TCR_to_suppyrRS
36 7 Helena Głąbska
     gAMPA_TCR_to_suppyrFRB = z * gAMPA_TCR_to_suppyrFRB
37 7 Helena Głąbska
     gNMDA_TCR_to_suppyrFRB = z * gNMDA_TCR_to_suppyrFRB
38 7 Helena Głąbska
    ...
39 7 Helena Głąbska
40 7 Helena Głąbska
gNMDA\_TCR\_to\_suppyrFRB becomes 0. Then when you compute NMDA activation
41 7 Helena Głąbska
from TCR to suppyrFRB
42 7 Helena Głąbska
43 7 Helena Głąbska
    ....
44 7 Helena Głąbska
45 7 Helena Głąbska
    ! NMDA part
46 7 Helena Głąbska
            if (delta.le.5.d0) then
47 7 Helena Głąbska
           gNMDA_suppyrFRB(k,L) = gNMDA_suppyrFRB(k,L) +
48 7 Helena Głąbska
         &  gNMDA_TCR_to_suppyrFRB * delta * 0.2d0
49 7 Helena Głąbska
            else
50 7 Helena Głąbska
           dexparg = (delta - 5.d0)/tauNMDA_TCR_to_suppyrFRB
51 7 Helena Głąbska
              if (dexparg.le.5.d0) then
52 7 Helena Głąbska
              z = dexptablesmall (int(dexparg*1000.d0))
53 7 Helena Głąbska
             else if (dexparg.le.100.d0) then
54 7 Helena Głąbska
              z = dexptablebig (int(dexparg*10.d0))
55 7 Helena Głąbska
             else
56 7 Helena Głąbska
              z = 0.d0
57 7 Helena Głąbska
             endif
58 7 Helena Głąbska
           gNMDA_suppyrFRB(k,L) = gNMDA_suppyrFRB(k,L) +
59 7 Helena Głąbska
         &  gNMDA_TCR_to_suppyrFRB * z
60 7 Helena Głąbska
            endif
61 7 Helena Głąbska
    c Test for NMDA saturation
62 7 Helena Głąbska
           z = NMDA_saturation_fact * gNMDA_TCR_to_suppyrFRB
63 7 Helena Głąbska
           if (gNMDA_suppyrFRB(k,L).gt.z)
64 7 Helena Głąbska
         &  gNMDA_suppyrFRB(k,L) = z
65 7 Helena Głąbska
    ! end NMDA part
66 7 Helena Głąbska
    ....
67 7 Helena Głąbska
68 7 Helena Głąbska
It seems that this piece of code, more precisely the last three lines:
69 7 Helena Głąbska
70 18 Helena Głąbska
    c Test for NMDA saturation
71 18 Helena Głąbska
           z = NMDA_saturation_fact * gNMDA_TCR_to_suppyrFRB
72 18 Helena Głąbska
           if (gNMDA_suppyrFRB(k,L).gt.z)
73 18 Helena Głąbska
         &  gNMDA_suppyrFRB(k,L) = z
74 18 Helena Głąbska
    </pre>
75 18 Helena Głąbska
     kills completely NMDA activation of suppyrFRB cells from all the other populations, not just TCR (except from nontuftRS cells, nontuftRS -  suppyrFRB NMDA conductance is calculated after this block). In Neuron version there is no such behaviour.
76 1 Padraig Gleeson
77 18 Helena Głąbska
    An *updated version* of this model in NEURON is being worked on "here":https://github.com/hglabska/Thalamocortical/tree/Neuron_version_simplified_groucho_file/Neuron. The version allows to modify easily the network, e.g. to add new population (version commited on 26 June 2013 and later), replace one template by another  e.g. tuftIB Traub cell  by "Hay cell":http://senselab.med.yale.edu/ModelDb/ShowModel.asp?model=139653 ( version commited on 04 July 2013 or later).  The main groucho.hoc file is simpler and much shorter (about 10 times), parameters like AMPA, GABA, NMDA conductances, connections between populations are defined in separated files.
78 1 Padraig Gleeson
79 18 Helena Głąbska
    h4. Tests for "Neuron":http://senselab.med.yale.edu/ModelDb/ShowModel.asp?model=82894 and "Fortran":https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc version . Trying to reproduce results from the "article":http://www.ncbi.nlm.nih.gov/pubmed/15525801
80 1 Padraig Gleeson
81 18 Helena Głąbska
    *Remark 1* In Fortran version, compilation flag  -finit-local-zero , seems to be important!
82 18 Helena Głąbska
    *Remark 2* If you want to run the Fortran version locally on less than 14 cores you can do this in this way:
83 18 Helena Głąbska
    <pre>
84 18 Helena Głąbska
    echo localhost >> my_hostfile
85 18 Helena Głąbska
    mpirun -np 14 --hostfile my_hostfile ./groucho
86 10 Helena Głąbska
87 8 Helena Głąbska
Thanks to kindness of Roger Traub, who sent us parameters which were used to generate figures 2. and 7. in the [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801) , [we](http://www.opensourcebrain.org/groups/71) were able to test how well we can reproduce the results on different version of the model.
88 12 Helena Głąbska
89 18 Helena Głąbska
##### Single Cell
90 18 Helena Głąbska
91 18 Helena Głąbska
Results from Appendix A - activity of single cells after applying some current to the soma, were reproduce reasonable well in Neuron version. For more data look [here](http://figshare.com/articles/Neuron_single_cell/861118) .
92 18 Helena Głąbska
93 12 Helena Głąbska
To compare the single cell result in Neuron with Fortran version you can use [this](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) code with makefile.single\_cell instead of makefile. This version contains additional 14 programs to simulate single cell from every of 14 populations.
94 1 Padraig Gleeson
95 12 Helena Głąbska
The biggest challenge in Appendix A is to reproduce fig A4C: applying some pulse current in apical dendrite caused somatic burst.
96 12 Helena Głąbska
97 1 Padraig Gleeson
![](A4C.png)
98 12 Helena Głąbska
99 17 Helena Głąbska
First difficulties is to estimate the amplitude of the current (It is not describe in article).
100 14 Helena Głąbska
101 14 Helena Głąbska
*I =3\* /10)) \* /20)) nA,*
102 12 Helena Głąbska
 looks reasonable well:
103 1 Padraig Gleeson
104 1 Padraig Gleeson
![](pulse.png)
105 12 Helena Głąbska
106 17 Helena Głąbska
but Neuron result doesn’t look similar like the result in the article (colours: green D1, black D2, red soma):
107 12 Helena Głąbska
108 14 Helena Głąbska
**Neuron**
109 12 Helena Głąbska
![](tuftIB_Neuron_voltage.png)
110 1 Padraig Gleeson
111 1 Padraig Gleeson
also [Fortran version](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) (tuftIB.f ) of the model failed to reproduce the somatic burst with the same stimulus.
112 13 Helena Głąbska
113 14 Helena Głąbska
**Fortran**
114 1 Padraig Gleeson
![](voltage_tutfIB_fortran.png)
115 14 Helena Głąbska
116 14 Helena Głąbska
It is possible to obtain this somatic spikes ( in both Neuron and Fortran version) after depolarizing the soma by 1nA current and increasing the apical stimulus 3 times. Decreasing the depolarizing somatic currents two times (0.5 nA) , or using the apical stimulus like at the beginning (*I =3\* /10)) \* /20))* ), caused that the somatic spikes disappear.
117 14 Helena Głąbska
118 14 Helena Głąbska
**Neuron**
119 14 Helena Głąbska
![](neuron_burst.png)
120 14 Helena Głąbska
121 14 Helena Głąbska
**Fortran**
122 14 Helena Głąbska
![](fortran_burst.png)
123 14 Helena Głąbska
124 14 Helena Głąbska
**Remark :** Look at the difference in the somatic membrane potential after the burst, between Fortran and Neuron versions.
125 14 Helena Głąbska
126 14 Helena Głąbska
For more data look here ( EPSP means apical stimulus with amplitude *I =3\* /10)) \* /20))*):
127 14 Helena Głąbska
128 14 Helena Głąbska
Fortran
129 14 Helena Głąbska
[EPSP](http://figshare.com/articles/tuftIB_cell_strong_dendritic_input_additional_somatick_input_Fortran_version/861127)
130 14 Helena Głąbska
131 14 Helena Głąbska
[somatic current 1nA + 3\*EPSP](http://figshare.com/articles/tuftIB_cell_strong_dendritic_input_additional_somatick_input_Fortran_version/861127)
132 14 Helena Głąbska
133 14 Helena Głąbska
[somatic current 1nA + EPSP](http://figshare.com/articles/_tuftIB_cell_dendritic_input_somatic_input_0_5_nA_Fortran_version/861133)
134 14 Helena Głąbska
135 15 Helena Głąbska
[somatic current 0.5 nA + 3\*EPSP](http://figshare.com/articles/tuftIB_cell_strong_dendritic_input_small_somatic_input_Fortran_version/861130)
136 14 Helena Głąbska
137 14 Helena Głąbska
Neuron
138 14 Helena Głąbska
[EPSP, 3 \* EPSP ](http://figshare.com/articles/tuftIB_cell_dendritic_input_Neuron_version/861138)
139 14 Helena Głąbska
140 16 Helena Głąbska
[somatic current 1 nA + EPSP, 3\*EPSP](http://figshare.com/articles/_tuftIB_cell_dendritic_input_somatic_current_1_nA_Neuron_version/861145)
141 14 Helena Głąbska
142 16 Helena Głąbska
[somatic current 0.5 nA + EPSP, 3\*EPSP](http://figshare.com/articles/_tuftIB_cell_dendritic_input_somatic_current_0_5_nA_Neuron_version_/861153)
143 13 Helena Głąbska
144 1 Padraig Gleeson
##### Figure 2
145 10 Helena Głąbska
146 1 Padraig Gleeson
“Simulation of kainate-induced gamma oscillations”
147 10 Helena Głąbska
148 1 Padraig Gleeson
![](test2_labels.png)
149 10 Helena Głąbska
150 17 Helena Głąbska
The results in both Neuron and Fortran version looks quite similar. Only be aware that activity of suppyrRS differs much between individual cells. One questionable issue is appearance of the burst after about 1500 ms in Fortran and nearly 1200 ms in Neuron version (not shown here), which they didn’t report in the [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801).
151 10 Helena Głąbska
152 10 Helena Głąbska
You can download the data (+ rasterplot) for Fig 2 from Fortran and Neuron simulation: [Fortran data](http://figshare.com/articles/2_Fortran/858844) and [Neuron data](http://figshare.com/articles/2_Neuron_use_traubexac_0/858878).
153 17 Helena Głąbska
For Neuron simulation you can also compare the result with simulation using the “traub\_exact()” algorithm: [Neuron traub\_excat() data](http://figshare.com/articles/2_Neuron_use_traubexac_1/858893). More about “traub\_excat()” algorithm you can read in [notes on conversion of this model to NEURON from Fortran](http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=82894&file=\nrntraub\README) by Tom Morse and Michael Hines.
154 10 Helena Głąbska
155 10 Helena Głąbska
##### Figure 7
156 10 Helena Głąbska
157 10 Helena Głąbska
“Effects of disinhibition in model (cortex only, with thalamus disconnected), when there are open gap junctions between the axons of the respective principal cell populations (superficial pyramids, spiny stellates, layer 5 pyramids, layer 6 pyramids), and spiny stellates are strongly interconnected by AMPA receptors .”
158 10 Helena Głąbska
159 8 Helena Głąbska
Figure 7 from the [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801)
160 1 Padraig Gleeson
161 8 Helena Głąbska
![](7paper.png)
162 8 Helena Głąbska
163 1 Padraig Gleeson
**7A**
164 8 Helena Głąbska
165 10 Helena Głąbska
In the [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801) they raported about consisting of 17 burst complexes that terminate spontaneously. The last 5 of the bursts are shown. Results from the [Fortran](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) version are very similar but only 14 bursts appears. In Neuron version the result is much different.
166 8 Helena Głąbska
167 9 Helena Głąbska
![](7A_small_labels.png)
168 9 Helena Głąbska
169 10 Helena Głąbska
You can download the data (+ rasterplot) for Fig 7A from Fortran and Neuron simulation: [Fortran data](http://figshare.com/articles/7A/855456) and [Neuron data](http://figshare.com/articles/7A_Neuron_use_traubexac_0/855486).
170 1 Padraig Gleeson
For Neuron simulation you can also compare the result with simulation using the “traub\_exact()” algoritm: [Neuron traub\_excat() data](http://figshare.com/articles/7A_Neuron_use_traubexac_1/856743). More about “traub\_excat()” algoritm you can read in [notes on conversion of this model to NEURON from Fortran](http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=82894&file=\nrntraub\README) by Tom Morse and Michael Hines.
171 9 Helena Głąbska
172 8 Helena Głąbska
**7B**
173 9 Helena Głąbska
Results from the [Fortran](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) version looks again very similar, although gives much more complex bursts, at least 6, when prolong the simulation up to 2000 ms (results not shown here - [download](http://figshare.com/articles/7B_Fortran_long/858794) ) .
174 1 Padraig Gleeson
175 1 Padraig Gleeson
![](7B_small_labels.png)
176 9 Helena Głąbska
177 10 Helena Głąbska
You can download the data (+ rasterplot) for Fig 7B from Fortran and Neuron simulation: [Fortran data](http://figshare.com/articles/7B_Fortran/855478) and [Neuron data](http://figshare.com/articles/7B_Neuron_use_traubexac_0/856699) compare with [Neuron traub\_excat() data](http://figshare.com/articles/7B_Neuron_use_traubexac_1/856753) .
178 8 Helena Głąbska
179 1 Padraig Gleeson
**7C**
180 1 Padraig Gleeson
181 9 Helena Głąbska
![](7C_small_labels.png)
182 8 Helena Głąbska
183 10 Helena Głąbska
You can download the data (+ rasterplot) for Fig 7C from Fortran and Neuron simulation. [Fortran data](http://figshare.com/articles/7C/855462) and [Neuron data](http://figshare.com/articles/7C_Neuron_use_traubexac_0/856722) compare with [Neuron traub\_excat() data](http://figshare.com/articles/7C_Neuron_use_traubexac_1/858769) .
184 9 Helena Głąbska
185 1 Padraig Gleeson
**7D**
186 1 Padraig Gleeson
187 1 Padraig Gleeson
![](7D_small_labels.png)
188 1 Padraig Gleeson
189 1 Padraig Gleeson
You can download the data (+ rasterplot) for Fig 7D from Fortran and Neuron simulation. [Fortran data](http://figshare.com/articles/7D_Fortran/855470) and [Neuron data](http://figshare.com/articles/7D_Neuron_use_traubexac_0/856732) compare with [Neuron traub\_excat() data](http://figshare.com/articles/7D_Neuron_use_traubexact_1/858779)
190 17 Helena Głąbska
191 1 Padraig Gleeson
#### Response to simple stimulus - comparison between Fortran and Neuron versions.
192 1 Padraig Gleeson
193 17 Helena Głąbska
**Gap junctions are closed,** thalamus is connected with cortex.
194 17 Helena Głąbska
195 17 Helena Głąbska
Stimulus: current injection to thalamic (TCR) somas . Current delay 300 ms, duration 2 ms, amplitude 3 nA.
196 17 Helena Głąbska
197 17 Helena Głąbska
**Fortran**
198 1 Padraig Gleeson
In *normal* case there is small, short response in layers 2/3, 4 and inhibitory neurons in layers 5/6. The answer is much better visible if we decrease GABA conductances, but still there is no response in layer 5 and 6 in pyramidal cells (except ectopic spikes).
199 1 Padraig Gleeson
200 17 Helena Głąbska
**Neuron**
201 17 Helena Głąbska
No response in the cortex in *normal* case. Answer in layers 2/3, 4 and inhibitory neurons in layers 5/6 after decreasing GABA conductances, but activity in layers 2/3 is shorter than in Fortran case, single spike in pyramidal cells layer 6 and no response in layer 5 (only ectopic spikes).
202 17 Helena Głąbska
203 18 Helena Głąbska
[data](http://figshare.com/articles/Reponse_to_simple_thalamic_stimulus/870469)
204 18 Helena Głąbska
205 17 Helena Głąbska
![](thalamus_awake0.png)
206 17 Helena Głąbska
207 17 Helena Głąbska
Applying additional current tu somas in pyramidal cells in layer 5 (1 nA) and 6 (0.75 nA) ( awake = 1 in Neuron version).
208 17 Helena Głąbska
The additional stimulus is to big, a lot of spontaneous burst in every case. In Fortran version response in layer 2/3 lasts longer.
209 17 Helena Głąbska
210 18 Helena Głąbska
[data + code](http://figshare.com/articles/reposnse_to_simple_stimulus_awake_1/868905)
211 18 Helena Głąbska
212 17 Helena Głąbska
![](thalamus_awake1.png)
213 17 Helena Głąbska
214 17 Helena Głąbska
Additional current to somas; 0.5 nA in pyramidal cells in layer 5 and 0.375 nA in somas of pyramids in layer 6.
215 17 Helena Głąbska
216 17 Helena Głąbska
**Fortran**
217 17 Helena Głąbska
The additional stimulus is still to big in Fortran version ( a lot of spontaneous burst).
218 17 Helena Głąbska
219 17 Helena Głąbska
**Neuron**
220 17 Helena Głąbska
Spontaneous burst still exist but there are very seldom (not shown on the picture). Now can observe response in every layer.
221 1 Padraig Gleeson
222 18 Helena Głąbska
[data](http://figshare.com/articles/_reposnse_to_simple_stimulus_awake_0_5/870460)
223 18 Helena Głąbska
224 17 Helena Głąbska
![](thalamus_awake05.png)
225 17 Helena Głąbska
226 17 Helena Głąbska
Additional current to somas; 0.2 nA in pyramidal cells in layer 5 and 0.15 nA in somas of pyramids in layer 6.
227 17 Helena Głąbska
228 17 Helena Głąbska
**Fortran**
229 17 Helena Głąbska
All layers answer to stimulus, only response in pyramids layer 5 and 6 is quite late.
230 17 Helena Głąbska
231 17 Helena Głąbska
**Neuron**
232 17 Helena Głąbska
Again no response in layers 5 and single spike or no response in layer 6 pyramids.
233 18 Helena Głąbska
234 18 Helena Głąbska
[data](http://figshare.com/articles/_reposnse_to_simple_stimulus_awake_0_2/868944)
235 17 Helena Głąbska
236 17 Helena Głąbska
![](thalamus_awake02.png)
237 17 Helena Głąbska
238 17 Helena Głąbska
**Conclusions/Remarks:**
239 17 Helena Głąbska
240 17 Helena Głąbska
* Fortran and Neuron code doesn’t generate the soma output even when gap junctions are closed
241 17 Helena Głąbska
* in Fortran version response in layer 2/3 is more complex, 3 bursts versus 1 (why? )
242 17 Helena Głąbska
* when gap junctions are closed in *normal* condition when GABA conductance is not decreased, response in layer 2/3 pyramids last extremely short (single spikes)
243 8 Helena Głąbska
244 1 Padraig Gleeson
### Limitations of the conversion of the model to MOOSE
245 1 Padraig Gleeson
246 1 Padraig Gleeson
TODO…
247 1 Padraig Gleeson
248 1 Padraig Gleeson
### Limitations of the conversion of the model to NeuroML
249 1 Padraig Gleeson
250 5 Padraig Gleeson
**Optimal spatial discretisation for each cell needs to be investigated**
251 5 Padraig Gleeson
252 3 Padraig Gleeson
Important details of the process of conversion of the cell models to NeuroML, and matching cell behaviour across simulators is present in the [2010 NeuroML paper](http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000815).
253 1 Padraig Gleeson
254 5 Padraig Gleeson
The spatial discretisation of the cells influenced precise spike timing. Changing the number of compartments/points used to calculate the membrane potential changed the timing of the cell (e.g. changing the value of nseg in NEURON on all sections). See below for an example of how 3 cells with differing numbers of compartments converged at different rates. A) Nucleus reticularis thalami (nRT) cell; B) Superficial Low Threshold spiking (LTS) cell; C) Layer 6 Non-tufted Regular Spiking pyramidal cell. Traces for NEURON (black) and MOOSE (green) and GENESIS (red).
255 1 Padraig Gleeson
256 5 Padraig Gleeson
![](http://www.opensourcebrain.org/attachments/download/114/converge.png)
257 5 Padraig Gleeson
258 1 Padraig Gleeson
**NMDA conductance wave form**
259 5 Padraig Gleeson
260 5 Padraig Gleeson
The NMDA synapse model used in the network has an unconventional form, with a scaling factor rising lineally between 0 and 5ms, and decaying exponentially. This can probably be approximated by a double exponential synapse (coupled with v & [Mg] dependent blocking mechanism).
261 5 Padraig Gleeson
262 1 Padraig Gleeson
**Firing rate vs. injected current of cells**
263 5 Padraig Gleeson
264 5 Padraig Gleeson
Many of the cells show unusual F/I curves.
265 5 Padraig Gleeson
266 1 Padraig Gleeson
![](/attachments/download/113/ifcurve.png)
267 1 Padraig Gleeson
268 5 Padraig Gleeson
**Support in NeuroML**
269 5 Padraig Gleeson
270 5 Padraig Gleeson
All model elements from the neuroConstruct generated network can be exported to valid NeuroML v1.8.1.
271 5 Padraig Gleeson
272 5 Padraig Gleeson
Model can be exported to [(mostly valid) NeuroML 2](https://github.com/OpenSourceBrain/Thalamocortical/tree/master/neuroConstruct/generatedNeuroML2), but there is not yet an application that can handle such detailed NML2 models (but we’re [working on it](https://github.com/NeuroML/org.neuroml.export/blob/development/src/main/java/org/neuroml/export/neuron/NeuronWriter.java)).