Edit History

Known issues » History » Version 20

Helena Głąbska, 20 Jun 2016 17:52

1 1 Padraig Gleeson
Known issues with Traub et al 2005.
2 1 Padraig Gleeson
-----------------------------------
3 1 Padraig Gleeson
4 1 Padraig Gleeson
This is a quite complex and detailed model and as discussed in the [original paper](http://www.ncbi.nlm.nih.gov/pubmed/15525801?dopt=Abstract)
5 1 Padraig Gleeson
6 1 Padraig Gleeson
> Any model, even of a small bit of cortex, is subject to difficulties and hazards: limited data, large numbers of parameters, criticisms that models with complexity comparable to the modeled system cannot be scientifically useful, the expense and slowness of the necessary computations, and serious uncertainties as to how a complex model can be compared with experiment and shown to be predictive.
7 1 Padraig Gleeson
> The above difficulties and hazards are too real to be dismissed readily. In our opinion, the only way to proceed is through a state of denial that any of the difficulties need be fatal. The reader must then judge whether the results, preliminary as they must be, help our understanding.
8 1 Padraig Gleeson
9 1 Padraig Gleeson
Even the published Fortran version of this model was acknowledged to be incomplete. Each conversion of this model will deviate to a small or large extent from this version.
10 1 Padraig Gleeson
11 6 Padraig Gleeson
### Questions about physiological properties of model
12 6 Padraig Gleeson
13 6 Padraig Gleeson
**Dependence on Fast Regular Bursting cells for oscillatory behaviour**
14 6 Padraig Gleeson
15 6 Padraig Gleeson
**Prevalence of gap junctions**
16 6 Padraig Gleeson
17 6 Padraig Gleeson
**High current threshold for deep pyramidal firing**
18 6 Padraig Gleeson
19 6 Padraig Gleeson
**Not tested with external synaptic input**
20 6 Padraig Gleeson
21 1 Padraig Gleeson
### Limitations of the conversion of the model to NEURON
22 1 Padraig Gleeson
23 1 Padraig Gleeson
It is useful to read the [notes on conversion of this model to NEURON from Fortran](http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=82894&file=\nrntraub\README) by Tom Morse and Michael Hines
24 1 Padraig Gleeson
25 7 Helena Głąbska
**Slightly different method of running the simulation** (e.g. in Neuron information about spike is sent immediately, in Fortran every 0.1 ms )
26 7 Helena Głąbska
27 20 Helena Głąbska
**Sum of transmembrane currents in every single cells sums up to 0 only if you use cvode\_active**
28 1 Padraig Gleeson
29 20 Helena Głąbska
**Diffrent behaviour of NMDA synapse when thalamus is disconnected** (some bug in Fortran version?)
30 17 Helena Głąbska
31 7 Helena Głąbska
In Fortran code:
32 7 Helena Głąbska
33 7 Helena Głąbska
     z = 0.d0  ! thalamus disconnected
34 7 Helena Głąbska
     gAMPA_TCR_to_suppyrRS = z * gAMPA_TCR_to_suppyrRS
35 7 Helena Głąbska
     gNMDA_TCR_to_suppyrRS = z * gNMDA_TCR_to_suppyrRS
36 7 Helena Głąbska
     gAMPA_TCR_to_suppyrFRB = z * gAMPA_TCR_to_suppyrFRB
37 7 Helena Głąbska
     gNMDA_TCR_to_suppyrFRB = z * gNMDA_TCR_to_suppyrFRB
38 7 Helena Głąbska
    ...
39 7 Helena Głąbska
40 7 Helena Głąbska
gNMDA\_TCR\_to\_suppyrFRB becomes 0. Then when you compute NMDA activation
41 7 Helena Głąbska
from TCR to suppyrFRB
42 7 Helena Głąbska
43 7 Helena Głąbska
    ....
44 7 Helena Głąbska
45 7 Helena Głąbska
    ! NMDA part
46 7 Helena Głąbska
            if (delta.le.5.d0) then
47 7 Helena Głąbska
           gNMDA_suppyrFRB(k,L) = gNMDA_suppyrFRB(k,L) +
48 7 Helena Głąbska
         &  gNMDA_TCR_to_suppyrFRB * delta * 0.2d0
49 7 Helena Głąbska
            else
50 7 Helena Głąbska
           dexparg = (delta - 5.d0)/tauNMDA_TCR_to_suppyrFRB
51 7 Helena Głąbska
              if (dexparg.le.5.d0) then
52 7 Helena Głąbska
              z = dexptablesmall (int(dexparg*1000.d0))
53 7 Helena Głąbska
             else if (dexparg.le.100.d0) then
54 7 Helena Głąbska
              z = dexptablebig (int(dexparg*10.d0))
55 7 Helena Głąbska
             else
56 7 Helena Głąbska
              z = 0.d0
57 7 Helena Głąbska
             endif
58 7 Helena Głąbska
           gNMDA_suppyrFRB(k,L) = gNMDA_suppyrFRB(k,L) +
59 7 Helena Głąbska
         &  gNMDA_TCR_to_suppyrFRB * z
60 7 Helena Głąbska
            endif
61 7 Helena Głąbska
    c Test for NMDA saturation
62 7 Helena Głąbska
           z = NMDA_saturation_fact * gNMDA_TCR_to_suppyrFRB
63 7 Helena Głąbska
           if (gNMDA_suppyrFRB(k,L).gt.z)
64 7 Helena Głąbska
         &  gNMDA_suppyrFRB(k,L) = z
65 7 Helena Głąbska
    ! end NMDA part
66 7 Helena Głąbska
    ....
67 7 Helena Głąbska
68 7 Helena Głąbska
It seems that this piece of code, more precisely the last three lines:
69 7 Helena Głąbska
70 18 Helena Głąbska
    c Test for NMDA saturation
71 18 Helena Głąbska
           z = NMDA_saturation_fact * gNMDA_TCR_to_suppyrFRB
72 18 Helena Głąbska
           if (gNMDA_suppyrFRB(k,L).gt.z)
73 1 Padraig Gleeson
         &  gNMDA_suppyrFRB(k,L) = z
74 1 Padraig Gleeson
75 20 Helena Głąbska
kills completely NMDA activation of suppyrFRB cells from all the other populations, not just TCR (except from nontuftRS cells, nontuftRS -  suppyrFRB NMDA conductance is calculated after this block). In Neuron version there is no such behaviour.
76 1 Padraig Gleeson
77 20 Helena Głąbska
An *updated version* of this model in NEURON is being worked on "here":https://github.com/hglabska/Thalamocortical/tree/Neuron_version_simplified_groucho_file/Neuron. The version allows to modify easily the network, e.g. to add new population (version commited on 26 June 2013 and later), replace one template by another  e.g. tuftIB Traub cell  by "Hay cell":http://senselab.med.yale.edu/ModelDb/ShowModel.asp?model=139653 ( version commited on 04 July 2013 or later).  The main groucho.hoc file is simpler and much shorter (about 10 times), parameters like AMPA, GABA, NMDA conductances, connections between populations are defined in separated files.
78 20 Helena Głąbska
79 20 Helena Głąbska
</p>
80 20 Helena Głąbska
</p>
81 20 Helena Głąbska
82 20 Helena Głąbska
#### Tests for "Neuron":http://senselab.med.yale.edu/ModelDb/ShowModel.asp?model=82894 and "Fortran":https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc version . Trying to reproduce results from the "article":http://www.ncbi.nlm.nih.gov/pubmed/15525801
83 1 Padraig Gleeson
84 18 Helena Głąbska
    *Remark 1* In Fortran version, compilation flag  -finit-local-zero , seems to be important!
85 18 Helena Głąbska
    *Remark 2* If you want to run the Fortran version locally on less than 14 cores you can do this in this way:
86 18 Helena Głąbska
    <pre>
87 18 Helena Głąbska
    echo localhost >> my_hostfile
88 18 Helena Głąbska
    mpirun -np 14 --hostfile my_hostfile ./groucho
89 10 Helena Głąbska
90 8 Helena Głąbska
Thanks to kindness of Roger Traub, who sent us parameters which were used to generate figures 2. and 7. in the [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801) , [we](http://www.opensourcebrain.org/groups/71) were able to test how well we can reproduce the results on different version of the model.
91 12 Helena Głąbska
92 18 Helena Głąbska
##### Single Cell
93 18 Helena Głąbska
94 18 Helena Głąbska
Results from Appendix A - activity of single cells after applying some current to the soma, were reproduce reasonable well in Neuron version. For more data look [here](http://figshare.com/articles/Neuron_single_cell/861118) .
95 18 Helena Głąbska
96 12 Helena Głąbska
To compare the single cell result in Neuron with Fortran version you can use [this](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) code with makefile.single\_cell instead of makefile. This version contains additional 14 programs to simulate single cell from every of 14 populations.
97 1 Padraig Gleeson
98 12 Helena Głąbska
The biggest challenge in Appendix A is to reproduce fig A4C: applying some pulse current in apical dendrite caused somatic burst.
99 12 Helena Głąbska
100 1 Padraig Gleeson
![](A4C.png)
101 12 Helena Głąbska
102 17 Helena Głąbska
First difficulties is to estimate the amplitude of the current (It is not describe in article).
103 14 Helena Głąbska
104 14 Helena Głąbska
*I =3\* /10)) \* /20)) nA,*
105 12 Helena Głąbska
 looks reasonable well:
106 1 Padraig Gleeson
107 1 Padraig Gleeson
![](pulse.png)
108 12 Helena Głąbska
109 17 Helena Głąbska
but Neuron result doesn’t look similar like the result in the article (colours: green D1, black D2, red soma):
110 12 Helena Głąbska
111 14 Helena Głąbska
**Neuron**
112 12 Helena Głąbska
![](tuftIB_Neuron_voltage.png)
113 1 Padraig Gleeson
114 1 Padraig Gleeson
also [Fortran version](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) (tuftIB.f ) of the model failed to reproduce the somatic burst with the same stimulus.
115 13 Helena Głąbska
116 14 Helena Głąbska
**Fortran**
117 1 Padraig Gleeson
![](voltage_tutfIB_fortran.png)
118 14 Helena Głąbska
119 14 Helena Głąbska
It is possible to obtain this somatic spikes ( in both Neuron and Fortran version) after depolarizing the soma by 1nA current and increasing the apical stimulus 3 times. Decreasing the depolarizing somatic currents two times (0.5 nA) , or using the apical stimulus like at the beginning (*I =3\* /10)) \* /20))* ), caused that the somatic spikes disappear.
120 14 Helena Głąbska
121 14 Helena Głąbska
**Neuron**
122 14 Helena Głąbska
![](neuron_burst.png)
123 14 Helena Głąbska
124 14 Helena Głąbska
**Fortran**
125 14 Helena Głąbska
![](fortran_burst.png)
126 14 Helena Głąbska
127 14 Helena Głąbska
**Remark :** Look at the difference in the somatic membrane potential after the burst, between Fortran and Neuron versions.
128 14 Helena Głąbska
129 14 Helena Głąbska
For more data look here ( EPSP means apical stimulus with amplitude *I =3\* /10)) \* /20))*):
130 14 Helena Głąbska
131 14 Helena Głąbska
Fortran
132 14 Helena Głąbska
[EPSP](http://figshare.com/articles/tuftIB_cell_strong_dendritic_input_additional_somatick_input_Fortran_version/861127)
133 14 Helena Głąbska
134 14 Helena Głąbska
[somatic current 1nA + 3\*EPSP](http://figshare.com/articles/tuftIB_cell_strong_dendritic_input_additional_somatick_input_Fortran_version/861127)
135 14 Helena Głąbska
136 14 Helena Głąbska
[somatic current 1nA + EPSP](http://figshare.com/articles/_tuftIB_cell_dendritic_input_somatic_input_0_5_nA_Fortran_version/861133)
137 14 Helena Głąbska
138 15 Helena Głąbska
[somatic current 0.5 nA + 3\*EPSP](http://figshare.com/articles/tuftIB_cell_strong_dendritic_input_small_somatic_input_Fortran_version/861130)
139 14 Helena Głąbska
140 14 Helena Głąbska
Neuron
141 14 Helena Głąbska
[EPSP, 3 \* EPSP ](http://figshare.com/articles/tuftIB_cell_dendritic_input_Neuron_version/861138)
142 14 Helena Głąbska
143 16 Helena Głąbska
[somatic current 1 nA + EPSP, 3\*EPSP](http://figshare.com/articles/_tuftIB_cell_dendritic_input_somatic_current_1_nA_Neuron_version/861145)
144 14 Helena Głąbska
145 16 Helena Głąbska
[somatic current 0.5 nA + EPSP, 3\*EPSP](http://figshare.com/articles/_tuftIB_cell_dendritic_input_somatic_current_0_5_nA_Neuron_version_/861153)
146 13 Helena Głąbska
147 1 Padraig Gleeson
##### Figure 2
148 10 Helena Głąbska
149 1 Padraig Gleeson
“Simulation of kainate-induced gamma oscillations”
150 10 Helena Głąbska
151 1 Padraig Gleeson
![](test2_labels.png)
152 10 Helena Głąbska
153 17 Helena Głąbska
The results in both Neuron and Fortran version looks quite similar. Only be aware that activity of suppyrRS differs much between individual cells. One questionable issue is appearance of the burst after about 1500 ms in Fortran and nearly 1200 ms in Neuron version (not shown here), which they didn’t report in the [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801).
154 10 Helena Głąbska
155 10 Helena Głąbska
You can download the data (+ rasterplot) for Fig 2 from Fortran and Neuron simulation: [Fortran data](http://figshare.com/articles/2_Fortran/858844) and [Neuron data](http://figshare.com/articles/2_Neuron_use_traubexac_0/858878).
156 17 Helena Głąbska
For Neuron simulation you can also compare the result with simulation using the “traub\_exact()” algorithm: [Neuron traub\_excat() data](http://figshare.com/articles/2_Neuron_use_traubexac_1/858893). More about “traub\_excat()” algorithm you can read in [notes on conversion of this model to NEURON from Fortran](http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=82894&file=\nrntraub\README) by Tom Morse and Michael Hines.
157 10 Helena Głąbska
158 10 Helena Głąbska
##### Figure 7
159 10 Helena Głąbska
160 10 Helena Głąbska
“Effects of disinhibition in model (cortex only, with thalamus disconnected), when there are open gap junctions between the axons of the respective principal cell populations (superficial pyramids, spiny stellates, layer 5 pyramids, layer 6 pyramids), and spiny stellates are strongly interconnected by AMPA receptors .”
161 10 Helena Głąbska
162 8 Helena Głąbska
Figure 7 from the [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801)
163 1 Padraig Gleeson
164 8 Helena Głąbska
![](7paper.png)
165 8 Helena Głąbska
166 1 Padraig Gleeson
**7A**
167 8 Helena Głąbska
168 10 Helena Głąbska
In the [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801) they raported about consisting of 17 burst complexes that terminate spontaneously. The last 5 of the bursts are shown. Results from the [Fortran](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) version are very similar but only 14 bursts appears. In Neuron version the result is much different.
169 8 Helena Głąbska
170 9 Helena Głąbska
![](7A_small_labels.png)
171 9 Helena Głąbska
172 10 Helena Głąbska
You can download the data (+ rasterplot) for Fig 7A from Fortran and Neuron simulation: [Fortran data](http://figshare.com/articles/7A/855456) and [Neuron data](http://figshare.com/articles/7A_Neuron_use_traubexac_0/855486).
173 1 Padraig Gleeson
For Neuron simulation you can also compare the result with simulation using the “traub\_exact()” algoritm: [Neuron traub\_excat() data](http://figshare.com/articles/7A_Neuron_use_traubexac_1/856743). More about “traub\_excat()” algoritm you can read in [notes on conversion of this model to NEURON from Fortran](http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=82894&file=\nrntraub\README) by Tom Morse and Michael Hines.
174 9 Helena Głąbska
175 8 Helena Głąbska
**7B**
176 9 Helena Głąbska
Results from the [Fortran](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) version looks again very similar, although gives much more complex bursts, at least 6, when prolong the simulation up to 2000 ms (results not shown here - [download](http://figshare.com/articles/7B_Fortran_long/858794) ) .
177 1 Padraig Gleeson
178 1 Padraig Gleeson
![](7B_small_labels.png)
179 9 Helena Głąbska
180 10 Helena Głąbska
You can download the data (+ rasterplot) for Fig 7B from Fortran and Neuron simulation: [Fortran data](http://figshare.com/articles/7B_Fortran/855478) and [Neuron data](http://figshare.com/articles/7B_Neuron_use_traubexac_0/856699) compare with [Neuron traub\_excat() data](http://figshare.com/articles/7B_Neuron_use_traubexac_1/856753) .
181 8 Helena Głąbska
182 1 Padraig Gleeson
**7C**
183 1 Padraig Gleeson
184 9 Helena Głąbska
![](7C_small_labels.png)
185 8 Helena Głąbska
186 10 Helena Głąbska
You can download the data (+ rasterplot) for Fig 7C from Fortran and Neuron simulation. [Fortran data](http://figshare.com/articles/7C/855462) and [Neuron data](http://figshare.com/articles/7C_Neuron_use_traubexac_0/856722) compare with [Neuron traub\_excat() data](http://figshare.com/articles/7C_Neuron_use_traubexac_1/858769) .
187 9 Helena Głąbska
188 1 Padraig Gleeson
**7D**
189 1 Padraig Gleeson
190 1 Padraig Gleeson
![](7D_small_labels.png)
191 1 Padraig Gleeson
192 1 Padraig Gleeson
You can download the data (+ rasterplot) for Fig 7D from Fortran and Neuron simulation. [Fortran data](http://figshare.com/articles/7D_Fortran/855470) and [Neuron data](http://figshare.com/articles/7D_Neuron_use_traubexac_0/856732) compare with [Neuron traub\_excat() data](http://figshare.com/articles/7D_Neuron_use_traubexact_1/858779)
193 17 Helena Głąbska
194 1 Padraig Gleeson
#### Response to simple stimulus - comparison between Fortran and Neuron versions.
195 1 Padraig Gleeson
196 17 Helena Głąbska
**Gap junctions are closed,** thalamus is connected with cortex.
197 17 Helena Głąbska
198 17 Helena Głąbska
Stimulus: current injection to thalamic (TCR) somas . Current delay 300 ms, duration 2 ms, amplitude 3 nA.
199 17 Helena Głąbska
200 17 Helena Głąbska
**Fortran**
201 1 Padraig Gleeson
In *normal* case there is small, short response in layers 2/3, 4 and inhibitory neurons in layers 5/6. The answer is much better visible if we decrease GABA conductances, but still there is no response in layer 5 and 6 in pyramidal cells (except ectopic spikes).
202 1 Padraig Gleeson
203 17 Helena Głąbska
**Neuron**
204 17 Helena Głąbska
No response in the cortex in *normal* case. Answer in layers 2/3, 4 and inhibitory neurons in layers 5/6 after decreasing GABA conductances, but activity in layers 2/3 is shorter than in Fortran case, single spike in pyramidal cells layer 6 and no response in layer 5 (only ectopic spikes).
205 17 Helena Głąbska
206 18 Helena Głąbska
[data](http://figshare.com/articles/Reponse_to_simple_thalamic_stimulus/870469)
207 18 Helena Głąbska
208 17 Helena Głąbska
![](thalamus_awake0.png)
209 17 Helena Głąbska
210 17 Helena Głąbska
Applying additional current tu somas in pyramidal cells in layer 5 (1 nA) and 6 (0.75 nA) ( awake = 1 in Neuron version).
211 17 Helena Głąbska
The additional stimulus is to big, a lot of spontaneous burst in every case. In Fortran version response in layer 2/3 lasts longer.
212 17 Helena Głąbska
213 18 Helena Głąbska
[data + code](http://figshare.com/articles/reposnse_to_simple_stimulus_awake_1/868905)
214 18 Helena Głąbska
215 17 Helena Głąbska
![](thalamus_awake1.png)
216 17 Helena Głąbska
217 17 Helena Głąbska
Additional current to somas; 0.5 nA in pyramidal cells in layer 5 and 0.375 nA in somas of pyramids in layer 6.
218 17 Helena Głąbska
219 17 Helena Głąbska
**Fortran**
220 17 Helena Głąbska
The additional stimulus is still to big in Fortran version ( a lot of spontaneous burst).
221 17 Helena Głąbska
222 17 Helena Głąbska
**Neuron**
223 17 Helena Głąbska
Spontaneous burst still exist but there are very seldom (not shown on the picture). Now can observe response in every layer.
224 1 Padraig Gleeson
225 18 Helena Głąbska
[data](http://figshare.com/articles/_reposnse_to_simple_stimulus_awake_0_5/870460)
226 18 Helena Głąbska
227 17 Helena Głąbska
![](thalamus_awake05.png)
228 17 Helena Głąbska
229 17 Helena Głąbska
Additional current to somas; 0.2 nA in pyramidal cells in layer 5 and 0.15 nA in somas of pyramids in layer 6.
230 17 Helena Głąbska
231 17 Helena Głąbska
**Fortran**
232 17 Helena Głąbska
All layers answer to stimulus, only response in pyramids layer 5 and 6 is quite late.
233 17 Helena Głąbska
234 17 Helena Głąbska
**Neuron**
235 17 Helena Głąbska
Again no response in layers 5 and single spike or no response in layer 6 pyramids.
236 18 Helena Głąbska
237 18 Helena Głąbska
[data](http://figshare.com/articles/_reposnse_to_simple_stimulus_awake_0_2/868944)
238 17 Helena Głąbska
239 17 Helena Głąbska
![](thalamus_awake02.png)
240 17 Helena Głąbska
241 17 Helena Głąbska
**Conclusions/Remarks:**
242 17 Helena Głąbska
243 17 Helena Głąbska
* Fortran and Neuron code doesn’t generate the soma output even when gap junctions are closed
244 17 Helena Głąbska
* in Fortran version response in layer 2/3 is more complex, 3 bursts versus 1 (why? )
245 17 Helena Głąbska
* when gap junctions are closed in *normal* condition when GABA conductance is not decreased, response in layer 2/3 pyramids last extremely short (single spikes)
246 8 Helena Głąbska
247 1 Padraig Gleeson
### Limitations of the conversion of the model to MOOSE
248 1 Padraig Gleeson
249 1 Padraig Gleeson
TODO…
250 1 Padraig Gleeson
251 1 Padraig Gleeson
### Limitations of the conversion of the model to NeuroML
252 1 Padraig Gleeson
253 5 Padraig Gleeson
**Optimal spatial discretisation for each cell needs to be investigated**
254 5 Padraig Gleeson
255 3 Padraig Gleeson
Important details of the process of conversion of the cell models to NeuroML, and matching cell behaviour across simulators is present in the [2010 NeuroML paper](http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000815).
256 1 Padraig Gleeson
257 5 Padraig Gleeson
The spatial discretisation of the cells influenced precise spike timing. Changing the number of compartments/points used to calculate the membrane potential changed the timing of the cell (e.g. changing the value of nseg in NEURON on all sections). See below for an example of how 3 cells with differing numbers of compartments converged at different rates. A) Nucleus reticularis thalami (nRT) cell; B) Superficial Low Threshold spiking (LTS) cell; C) Layer 6 Non-tufted Regular Spiking pyramidal cell. Traces for NEURON (black) and MOOSE (green) and GENESIS (red).
258 1 Padraig Gleeson
259 5 Padraig Gleeson
![](http://www.opensourcebrain.org/attachments/download/114/converge.png)
260 5 Padraig Gleeson
261 1 Padraig Gleeson
**NMDA conductance wave form**
262 5 Padraig Gleeson
263 5 Padraig Gleeson
The NMDA synapse model used in the network has an unconventional form, with a scaling factor rising lineally between 0 and 5ms, and decaying exponentially. This can probably be approximated by a double exponential synapse (coupled with v & [Mg] dependent blocking mechanism).
264 5 Padraig Gleeson
265 1 Padraig Gleeson
**Firing rate vs. injected current of cells**
266 5 Padraig Gleeson
267 5 Padraig Gleeson
Many of the cells show unusual F/I curves.
268 5 Padraig Gleeson
269 1 Padraig Gleeson
![](/attachments/download/113/ifcurve.png)
270 1 Padraig Gleeson
271 5 Padraig Gleeson
**Support in NeuroML**
272 5 Padraig Gleeson
273 5 Padraig Gleeson
All model elements from the neuroConstruct generated network can be exported to valid NeuroML v1.8.1.
274 5 Padraig Gleeson
275 5 Padraig Gleeson
Model can be exported to [(mostly valid) NeuroML 2](https://github.com/OpenSourceBrain/Thalamocortical/tree/master/neuroConstruct/generatedNeuroML2), but there is not yet an application that can handle such detailed NML2 models (but we’re [working on it](https://github.com/NeuroML/org.neuroml.export/blob/development/src/main/java/org/neuroml/export/neuron/NeuronWriter.java)).