Edit History

Known issues » History » Version 21

Padraig Gleeson, 21 Nov 2016 14:20

1 1 Padraig Gleeson
Known issues with Traub et al 2005.
2 1 Padraig Gleeson
-----------------------------------
3 1 Padraig Gleeson
4 1 Padraig Gleeson
This is a quite complex and detailed model and as discussed in the [original paper](http://www.ncbi.nlm.nih.gov/pubmed/15525801?dopt=Abstract)
5 1 Padraig Gleeson
6 1 Padraig Gleeson
> Any model, even of a small bit of cortex, is subject to difficulties and hazards: limited data, large numbers of parameters, criticisms that models with complexity comparable to the modeled system cannot be scientifically useful, the expense and slowness of the necessary computations, and serious uncertainties as to how a complex model can be compared with experiment and shown to be predictive.
7 1 Padraig Gleeson
> The above difficulties and hazards are too real to be dismissed readily. In our opinion, the only way to proceed is through a state of denial that any of the difficulties need be fatal. The reader must then judge whether the results, preliminary as they must be, help our understanding.
8 1 Padraig Gleeson
9 1 Padraig Gleeson
Even the published Fortran version of this model was acknowledged to be incomplete. Each conversion of this model will deviate to a small or large extent from this version.
10 1 Padraig Gleeson
11 6 Padraig Gleeson
### Questions about physiological properties of model
12 6 Padraig Gleeson
13 6 Padraig Gleeson
**Dependence on Fast Regular Bursting cells for oscillatory behaviour**
14 6 Padraig Gleeson
15 6 Padraig Gleeson
**Prevalence of gap junctions**
16 6 Padraig Gleeson
17 6 Padraig Gleeson
**High current threshold for deep pyramidal firing**
18 6 Padraig Gleeson
19 6 Padraig Gleeson
**Not tested with external synaptic input**
20 6 Padraig Gleeson
21 1 Padraig Gleeson
### Limitations of the conversion of the model to NEURON
22 1 Padraig Gleeson
23 1 Padraig Gleeson
It is useful to read the [notes on conversion of this model to NEURON from Fortran](http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=82894&file=\nrntraub\README) by Tom Morse and Michael Hines
24 1 Padraig Gleeson
25 21 Padraig Gleeson
**Note:** data generated by Helena Głąbska and Chaitanya Chintaluri at the Nencki Institute in Warsaw from the Neuron version of this model (used in the comments below) can be found [here](https://repod.pon.edu.pl/dataset/d106687c-45d9-40d2-9de3-a0ca8f2a2068).
26 21 Padraig Gleeson
27 21 Padraig Gleeson
28 7 Helena Głąbska
**Slightly different method of running the simulation** (e.g. in Neuron information about spike is sent immediately, in Fortran every 0.1 ms )
29 7 Helena Głąbska
30 20 Helena Głąbska
**Sum of transmembrane currents in every single cells sums up to 0 only if you use cvode\_active**
31 1 Padraig Gleeson
32 20 Helena Głąbska
**Diffrent behaviour of NMDA synapse when thalamus is disconnected** (some bug in Fortran version?)
33 17 Helena Głąbska
34 7 Helena Głąbska
In Fortran code:
35 7 Helena Głąbska
36 7 Helena Głąbska
     z = 0.d0  ! thalamus disconnected
37 7 Helena Głąbska
     gAMPA_TCR_to_suppyrRS = z * gAMPA_TCR_to_suppyrRS
38 7 Helena Głąbska
     gNMDA_TCR_to_suppyrRS = z * gNMDA_TCR_to_suppyrRS
39 7 Helena Głąbska
     gAMPA_TCR_to_suppyrFRB = z * gAMPA_TCR_to_suppyrFRB
40 7 Helena Głąbska
     gNMDA_TCR_to_suppyrFRB = z * gNMDA_TCR_to_suppyrFRB
41 7 Helena Głąbska
    ...
42 7 Helena Głąbska
43 7 Helena Głąbska
gNMDA\_TCR\_to\_suppyrFRB becomes 0. Then when you compute NMDA activation
44 7 Helena Głąbska
from TCR to suppyrFRB
45 7 Helena Głąbska
46 7 Helena Głąbska
    ....
47 7 Helena Głąbska
48 7 Helena Głąbska
    ! NMDA part
49 7 Helena Głąbska
            if (delta.le.5.d0) then
50 7 Helena Głąbska
           gNMDA_suppyrFRB(k,L) = gNMDA_suppyrFRB(k,L) +
51 7 Helena Głąbska
         &  gNMDA_TCR_to_suppyrFRB * delta * 0.2d0
52 7 Helena Głąbska
            else
53 7 Helena Głąbska
           dexparg = (delta - 5.d0)/tauNMDA_TCR_to_suppyrFRB
54 7 Helena Głąbska
              if (dexparg.le.5.d0) then
55 7 Helena Głąbska
              z = dexptablesmall (int(dexparg*1000.d0))
56 7 Helena Głąbska
             else if (dexparg.le.100.d0) then
57 7 Helena Głąbska
              z = dexptablebig (int(dexparg*10.d0))
58 7 Helena Głąbska
             else
59 7 Helena Głąbska
              z = 0.d0
60 7 Helena Głąbska
             endif
61 7 Helena Głąbska
           gNMDA_suppyrFRB(k,L) = gNMDA_suppyrFRB(k,L) +
62 7 Helena Głąbska
         &  gNMDA_TCR_to_suppyrFRB * z
63 7 Helena Głąbska
            endif
64 7 Helena Głąbska
    c Test for NMDA saturation
65 7 Helena Głąbska
           z = NMDA_saturation_fact * gNMDA_TCR_to_suppyrFRB
66 7 Helena Głąbska
           if (gNMDA_suppyrFRB(k,L).gt.z)
67 7 Helena Głąbska
         &  gNMDA_suppyrFRB(k,L) = z
68 7 Helena Głąbska
    ! end NMDA part
69 7 Helena Głąbska
    ....
70 7 Helena Głąbska
71 7 Helena Głąbska
It seems that this piece of code, more precisely the last three lines:
72 7 Helena Głąbska
73 18 Helena Głąbska
    c Test for NMDA saturation
74 18 Helena Głąbska
           z = NMDA_saturation_fact * gNMDA_TCR_to_suppyrFRB
75 18 Helena Głąbska
           if (gNMDA_suppyrFRB(k,L).gt.z)
76 1 Padraig Gleeson
         &  gNMDA_suppyrFRB(k,L) = z
77 1 Padraig Gleeson
78 20 Helena Głąbska
kills completely NMDA activation of suppyrFRB cells from all the other populations, not just TCR (except from nontuftRS cells, nontuftRS -  suppyrFRB NMDA conductance is calculated after this block). In Neuron version there is no such behaviour.
79 1 Padraig Gleeson
80 20 Helena Głąbska
An *updated version* of this model in NEURON is being worked on "here":https://github.com/hglabska/Thalamocortical/tree/Neuron_version_simplified_groucho_file/Neuron. The version allows to modify easily the network, e.g. to add new population (version commited on 26 June 2013 and later), replace one template by another  e.g. tuftIB Traub cell  by "Hay cell":http://senselab.med.yale.edu/ModelDb/ShowModel.asp?model=139653 ( version commited on 04 July 2013 or later).  The main groucho.hoc file is simpler and much shorter (about 10 times), parameters like AMPA, GABA, NMDA conductances, connections between populations are defined in separated files.
81 20 Helena Głąbska
82 20 Helena Głąbska
</p>
83 20 Helena Głąbska
</p>
84 20 Helena Głąbska
85 20 Helena Głąbska
#### Tests for "Neuron":http://senselab.med.yale.edu/ModelDb/ShowModel.asp?model=82894 and "Fortran":https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc version . Trying to reproduce results from the "article":http://www.ncbi.nlm.nih.gov/pubmed/15525801
86 1 Padraig Gleeson
87 18 Helena Głąbska
    *Remark 1* In Fortran version, compilation flag  -finit-local-zero , seems to be important!
88 18 Helena Głąbska
    *Remark 2* If you want to run the Fortran version locally on less than 14 cores you can do this in this way:
89 18 Helena Głąbska
    <pre>
90 18 Helena Głąbska
    echo localhost >> my_hostfile
91 18 Helena Głąbska
    mpirun -np 14 --hostfile my_hostfile ./groucho
92 10 Helena Głąbska
93 8 Helena Głąbska
Thanks to kindness of Roger Traub, who sent us parameters which were used to generate figures 2. and 7. in the [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801) , [we](http://www.opensourcebrain.org/groups/71) were able to test how well we can reproduce the results on different version of the model.
94 12 Helena Głąbska
95 18 Helena Głąbska
##### Single Cell
96 18 Helena Głąbska
97 18 Helena Głąbska
Results from Appendix A - activity of single cells after applying some current to the soma, were reproduce reasonable well in Neuron version. For more data look [here](http://figshare.com/articles/Neuron_single_cell/861118) .
98 18 Helena Głąbska
99 12 Helena Głąbska
To compare the single cell result in Neuron with Fortran version you can use [this](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) code with makefile.single\_cell instead of makefile. This version contains additional 14 programs to simulate single cell from every of 14 populations.
100 1 Padraig Gleeson
101 12 Helena Głąbska
The biggest challenge in Appendix A is to reproduce fig A4C: applying some pulse current in apical dendrite caused somatic burst.
102 12 Helena Głąbska
103 1 Padraig Gleeson
![](A4C.png)
104 12 Helena Głąbska
105 17 Helena Głąbska
First difficulties is to estimate the amplitude of the current (It is not describe in article).
106 14 Helena Głąbska
107 14 Helena Głąbska
*I =3\* /10)) \* /20)) nA,*
108 12 Helena Głąbska
 looks reasonable well:
109 1 Padraig Gleeson
110 1 Padraig Gleeson
![](pulse.png)
111 12 Helena Głąbska
112 17 Helena Głąbska
but Neuron result doesn’t look similar like the result in the article (colours: green D1, black D2, red soma):
113 12 Helena Głąbska
114 14 Helena Głąbska
**Neuron**
115 12 Helena Głąbska
![](tuftIB_Neuron_voltage.png)
116 1 Padraig Gleeson
117 1 Padraig Gleeson
also [Fortran version](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) (tuftIB.f ) of the model failed to reproduce the somatic burst with the same stimulus.
118 13 Helena Głąbska
119 14 Helena Głąbska
**Fortran**
120 1 Padraig Gleeson
![](voltage_tutfIB_fortran.png)
121 14 Helena Głąbska
122 14 Helena Głąbska
It is possible to obtain this somatic spikes ( in both Neuron and Fortran version) after depolarizing the soma by 1nA current and increasing the apical stimulus 3 times. Decreasing the depolarizing somatic currents two times (0.5 nA) , or using the apical stimulus like at the beginning (*I =3\* /10)) \* /20))* ), caused that the somatic spikes disappear.
123 14 Helena Głąbska
124 14 Helena Głąbska
**Neuron**
125 14 Helena Głąbska
![](neuron_burst.png)
126 14 Helena Głąbska
127 14 Helena Głąbska
**Fortran**
128 14 Helena Głąbska
![](fortran_burst.png)
129 14 Helena Głąbska
130 14 Helena Głąbska
**Remark :** Look at the difference in the somatic membrane potential after the burst, between Fortran and Neuron versions.
131 14 Helena Głąbska
132 14 Helena Głąbska
For more data look here ( EPSP means apical stimulus with amplitude *I =3\* /10)) \* /20))*):
133 14 Helena Głąbska
134 14 Helena Głąbska
Fortran
135 14 Helena Głąbska
[EPSP](http://figshare.com/articles/tuftIB_cell_strong_dendritic_input_additional_somatick_input_Fortran_version/861127)
136 14 Helena Głąbska
137 14 Helena Głąbska
[somatic current 1nA + 3\*EPSP](http://figshare.com/articles/tuftIB_cell_strong_dendritic_input_additional_somatick_input_Fortran_version/861127)
138 14 Helena Głąbska
139 14 Helena Głąbska
[somatic current 1nA + EPSP](http://figshare.com/articles/_tuftIB_cell_dendritic_input_somatic_input_0_5_nA_Fortran_version/861133)
140 14 Helena Głąbska
141 15 Helena Głąbska
[somatic current 0.5 nA + 3\*EPSP](http://figshare.com/articles/tuftIB_cell_strong_dendritic_input_small_somatic_input_Fortran_version/861130)
142 14 Helena Głąbska
143 14 Helena Głąbska
Neuron
144 14 Helena Głąbska
[EPSP, 3 \* EPSP ](http://figshare.com/articles/tuftIB_cell_dendritic_input_Neuron_version/861138)
145 14 Helena Głąbska
146 16 Helena Głąbska
[somatic current 1 nA + EPSP, 3\*EPSP](http://figshare.com/articles/_tuftIB_cell_dendritic_input_somatic_current_1_nA_Neuron_version/861145)
147 14 Helena Głąbska
148 16 Helena Głąbska
[somatic current 0.5 nA + EPSP, 3\*EPSP](http://figshare.com/articles/_tuftIB_cell_dendritic_input_somatic_current_0_5_nA_Neuron_version_/861153)
149 13 Helena Głąbska
150 1 Padraig Gleeson
##### Figure 2
151 10 Helena Głąbska
152 1 Padraig Gleeson
“Simulation of kainate-induced gamma oscillations”
153 10 Helena Głąbska
154 1 Padraig Gleeson
![](test2_labels.png)
155 10 Helena Głąbska
156 17 Helena Głąbska
The results in both Neuron and Fortran version looks quite similar. Only be aware that activity of suppyrRS differs much between individual cells. One questionable issue is appearance of the burst after about 1500 ms in Fortran and nearly 1200 ms in Neuron version (not shown here), which they didn’t report in the [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801).
157 10 Helena Głąbska
158 10 Helena Głąbska
You can download the data (+ rasterplot) for Fig 2 from Fortran and Neuron simulation: [Fortran data](http://figshare.com/articles/2_Fortran/858844) and [Neuron data](http://figshare.com/articles/2_Neuron_use_traubexac_0/858878).
159 17 Helena Głąbska
For Neuron simulation you can also compare the result with simulation using the “traub\_exact()” algorithm: [Neuron traub\_excat() data](http://figshare.com/articles/2_Neuron_use_traubexac_1/858893). More about “traub\_excat()” algorithm you can read in [notes on conversion of this model to NEURON from Fortran](http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=82894&file=\nrntraub\README) by Tom Morse and Michael Hines.
160 10 Helena Głąbska
161 10 Helena Głąbska
##### Figure 7
162 10 Helena Głąbska
163 10 Helena Głąbska
“Effects of disinhibition in model (cortex only, with thalamus disconnected), when there are open gap junctions between the axons of the respective principal cell populations (superficial pyramids, spiny stellates, layer 5 pyramids, layer 6 pyramids), and spiny stellates are strongly interconnected by AMPA receptors .”
164 10 Helena Głąbska
165 8 Helena Głąbska
Figure 7 from the [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801)
166 1 Padraig Gleeson
167 8 Helena Głąbska
![](7paper.png)
168 8 Helena Głąbska
169 1 Padraig Gleeson
**7A**
170 8 Helena Głąbska
171 10 Helena Głąbska
In the [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801) they raported about consisting of 17 burst complexes that terminate spontaneously. The last 5 of the bursts are shown. Results from the [Fortran](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) version are very similar but only 14 bursts appears. In Neuron version the result is much different.
172 8 Helena Głąbska
173 9 Helena Głąbska
![](7A_small_labels.png)
174 9 Helena Głąbska
175 10 Helena Głąbska
You can download the data (+ rasterplot) for Fig 7A from Fortran and Neuron simulation: [Fortran data](http://figshare.com/articles/7A/855456) and [Neuron data](http://figshare.com/articles/7A_Neuron_use_traubexac_0/855486).
176 1 Padraig Gleeson
For Neuron simulation you can also compare the result with simulation using the “traub\_exact()” algoritm: [Neuron traub\_excat() data](http://figshare.com/articles/7A_Neuron_use_traubexac_1/856743). More about “traub\_excat()” algoritm you can read in [notes on conversion of this model to NEURON from Fortran](http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=82894&file=\nrntraub\README) by Tom Morse and Michael Hines.
177 9 Helena Głąbska
178 8 Helena Głąbska
**7B**
179 9 Helena Głąbska
Results from the [Fortran](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) version looks again very similar, although gives much more complex bursts, at least 6, when prolong the simulation up to 2000 ms (results not shown here - [download](http://figshare.com/articles/7B_Fortran_long/858794) ) .
180 1 Padraig Gleeson
181 1 Padraig Gleeson
![](7B_small_labels.png)
182 9 Helena Głąbska
183 10 Helena Głąbska
You can download the data (+ rasterplot) for Fig 7B from Fortran and Neuron simulation: [Fortran data](http://figshare.com/articles/7B_Fortran/855478) and [Neuron data](http://figshare.com/articles/7B_Neuron_use_traubexac_0/856699) compare with [Neuron traub\_excat() data](http://figshare.com/articles/7B_Neuron_use_traubexac_1/856753) .
184 8 Helena Głąbska
185 1 Padraig Gleeson
**7C**
186 1 Padraig Gleeson
187 9 Helena Głąbska
![](7C_small_labels.png)
188 8 Helena Głąbska
189 10 Helena Głąbska
You can download the data (+ rasterplot) for Fig 7C from Fortran and Neuron simulation. [Fortran data](http://figshare.com/articles/7C/855462) and [Neuron data](http://figshare.com/articles/7C_Neuron_use_traubexac_0/856722) compare with [Neuron traub\_excat() data](http://figshare.com/articles/7C_Neuron_use_traubexac_1/858769) .
190 9 Helena Głąbska
191 1 Padraig Gleeson
**7D**
192 1 Padraig Gleeson
193 1 Padraig Gleeson
![](7D_small_labels.png)
194 1 Padraig Gleeson
195 1 Padraig Gleeson
You can download the data (+ rasterplot) for Fig 7D from Fortran and Neuron simulation. [Fortran data](http://figshare.com/articles/7D_Fortran/855470) and [Neuron data](http://figshare.com/articles/7D_Neuron_use_traubexac_0/856732) compare with [Neuron traub\_excat() data](http://figshare.com/articles/7D_Neuron_use_traubexact_1/858779)
196 17 Helena Głąbska
197 1 Padraig Gleeson
#### Response to simple stimulus - comparison between Fortran and Neuron versions.
198 1 Padraig Gleeson
199 17 Helena Głąbska
**Gap junctions are closed,** thalamus is connected with cortex.
200 17 Helena Głąbska
201 17 Helena Głąbska
Stimulus: current injection to thalamic (TCR) somas . Current delay 300 ms, duration 2 ms, amplitude 3 nA.
202 17 Helena Głąbska
203 17 Helena Głąbska
**Fortran**
204 1 Padraig Gleeson
In *normal* case there is small, short response in layers 2/3, 4 and inhibitory neurons in layers 5/6. The answer is much better visible if we decrease GABA conductances, but still there is no response in layer 5 and 6 in pyramidal cells (except ectopic spikes).
205 1 Padraig Gleeson
206 17 Helena Głąbska
**Neuron**
207 17 Helena Głąbska
No response in the cortex in *normal* case. Answer in layers 2/3, 4 and inhibitory neurons in layers 5/6 after decreasing GABA conductances, but activity in layers 2/3 is shorter than in Fortran case, single spike in pyramidal cells layer 6 and no response in layer 5 (only ectopic spikes).
208 17 Helena Głąbska
209 18 Helena Głąbska
[data](http://figshare.com/articles/Reponse_to_simple_thalamic_stimulus/870469)
210 18 Helena Głąbska
211 17 Helena Głąbska
![](thalamus_awake0.png)
212 17 Helena Głąbska
213 17 Helena Głąbska
Applying additional current tu somas in pyramidal cells in layer 5 (1 nA) and 6 (0.75 nA) ( awake = 1 in Neuron version).
214 17 Helena Głąbska
The additional stimulus is to big, a lot of spontaneous burst in every case. In Fortran version response in layer 2/3 lasts longer.
215 17 Helena Głąbska
216 18 Helena Głąbska
[data + code](http://figshare.com/articles/reposnse_to_simple_stimulus_awake_1/868905)
217 18 Helena Głąbska
218 17 Helena Głąbska
![](thalamus_awake1.png)
219 17 Helena Głąbska
220 17 Helena Głąbska
Additional current to somas; 0.5 nA in pyramidal cells in layer 5 and 0.375 nA in somas of pyramids in layer 6.
221 17 Helena Głąbska
222 17 Helena Głąbska
**Fortran**
223 17 Helena Głąbska
The additional stimulus is still to big in Fortran version ( a lot of spontaneous burst).
224 17 Helena Głąbska
225 17 Helena Głąbska
**Neuron**
226 17 Helena Głąbska
Spontaneous burst still exist but there are very seldom (not shown on the picture). Now can observe response in every layer.
227 1 Padraig Gleeson
228 18 Helena Głąbska
[data](http://figshare.com/articles/_reposnse_to_simple_stimulus_awake_0_5/870460)
229 18 Helena Głąbska
230 17 Helena Głąbska
![](thalamus_awake05.png)
231 17 Helena Głąbska
232 17 Helena Głąbska
Additional current to somas; 0.2 nA in pyramidal cells in layer 5 and 0.15 nA in somas of pyramids in layer 6.
233 17 Helena Głąbska
234 17 Helena Głąbska
**Fortran**
235 17 Helena Głąbska
All layers answer to stimulus, only response in pyramids layer 5 and 6 is quite late.
236 17 Helena Głąbska
237 17 Helena Głąbska
**Neuron**
238 17 Helena Głąbska
Again no response in layers 5 and single spike or no response in layer 6 pyramids.
239 18 Helena Głąbska
240 18 Helena Głąbska
[data](http://figshare.com/articles/_reposnse_to_simple_stimulus_awake_0_2/868944)
241 17 Helena Głąbska
242 17 Helena Głąbska
![](thalamus_awake02.png)
243 17 Helena Głąbska
244 17 Helena Głąbska
**Conclusions/Remarks:**
245 17 Helena Głąbska
246 17 Helena Głąbska
* Fortran and Neuron code doesn’t generate the soma output even when gap junctions are closed
247 17 Helena Głąbska
* in Fortran version response in layer 2/3 is more complex, 3 bursts versus 1 (why? )
248 17 Helena Głąbska
* when gap junctions are closed in *normal* condition when GABA conductance is not decreased, response in layer 2/3 pyramids last extremely short (single spikes)
249 8 Helena Głąbska
250 1 Padraig Gleeson
### Limitations of the conversion of the model to MOOSE
251 1 Padraig Gleeson
252 1 Padraig Gleeson
TODO…
253 1 Padraig Gleeson
254 1 Padraig Gleeson
### Limitations of the conversion of the model to NeuroML
255 1 Padraig Gleeson
256 5 Padraig Gleeson
**Optimal spatial discretisation for each cell needs to be investigated**
257 5 Padraig Gleeson
258 3 Padraig Gleeson
Important details of the process of conversion of the cell models to NeuroML, and matching cell behaviour across simulators is present in the [2010 NeuroML paper](http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000815).
259 1 Padraig Gleeson
260 5 Padraig Gleeson
The spatial discretisation of the cells influenced precise spike timing. Changing the number of compartments/points used to calculate the membrane potential changed the timing of the cell (e.g. changing the value of nseg in NEURON on all sections). See below for an example of how 3 cells with differing numbers of compartments converged at different rates. A) Nucleus reticularis thalami (nRT) cell; B) Superficial Low Threshold spiking (LTS) cell; C) Layer 6 Non-tufted Regular Spiking pyramidal cell. Traces for NEURON (black) and MOOSE (green) and GENESIS (red).
261 1 Padraig Gleeson
262 5 Padraig Gleeson
![](http://www.opensourcebrain.org/attachments/download/114/converge.png)
263 5 Padraig Gleeson
264 1 Padraig Gleeson
**NMDA conductance wave form**
265 5 Padraig Gleeson
266 5 Padraig Gleeson
The NMDA synapse model used in the network has an unconventional form, with a scaling factor rising lineally between 0 and 5ms, and decaying exponentially. This can probably be approximated by a double exponential synapse (coupled with v & [Mg] dependent blocking mechanism).
267 5 Padraig Gleeson
268 1 Padraig Gleeson
**Firing rate vs. injected current of cells**
269 5 Padraig Gleeson
270 5 Padraig Gleeson
Many of the cells show unusual F/I curves.
271 5 Padraig Gleeson
272 1 Padraig Gleeson
![](/attachments/download/113/ifcurve.png)
273 1 Padraig Gleeson
274 5 Padraig Gleeson
**Support in NeuroML**
275 5 Padraig Gleeson
276 5 Padraig Gleeson
All model elements from the neuroConstruct generated network can be exported to valid NeuroML v1.8.1.
277 5 Padraig Gleeson
278 5 Padraig Gleeson
Model can be exported to [(mostly valid) NeuroML 2](https://github.com/OpenSourceBrain/Thalamocortical/tree/master/neuroConstruct/generatedNeuroML2), but there is not yet an application that can handle such detailed NML2 models (but we’re [working on it](https://github.com/NeuroML/org.neuroml.export/blob/development/src/main/java/org/neuroml/export/neuron/NeuronWriter.java)).