Known issues » History » Version 8
Helena Głąbska, 30 Apr 2014 14:57
few more words about Traub model and trying to reproduce results from the paper, to be continued ...
1 | 1 | Padraig Gleeson | Known issues with Traub et al 2005. |
---|---|---|---|
2 | 1 | Padraig Gleeson | ----------------------------------- |
3 | 1 | Padraig Gleeson | |
4 | 1 | Padraig Gleeson | This is a quite complex and detailed model and as discussed in the [original paper](http://www.ncbi.nlm.nih.gov/pubmed/15525801?dopt=Abstract) |
5 | 1 | Padraig Gleeson | |
6 | 1 | Padraig Gleeson | > Any model, even of a small bit of cortex, is subject to difficulties and hazards: limited data, large numbers of parameters, criticisms that models with complexity comparable to the modeled system cannot be scientifically useful, the expense and slowness of the necessary computations, and serious uncertainties as to how a complex model can be compared with experiment and shown to be predictive. |
7 | 1 | Padraig Gleeson | > The above difficulties and hazards are too real to be dismissed readily. In our opinion, the only way to proceed is through a state of denial that any of the difficulties need be fatal. The reader must then judge whether the results, preliminary as they must be, help our understanding. |
8 | 1 | Padraig Gleeson | |
9 | 1 | Padraig Gleeson | Even the published Fortran version of this model was acknowledged to be incomplete. Each conversion of this model will deviate to a small or large extent from this version. |
10 | 1 | Padraig Gleeson | |
11 | 6 | Padraig Gleeson | ### Questions about physiological properties of model |
12 | 6 | Padraig Gleeson | |
13 | 6 | Padraig Gleeson | **Dependence on Fast Regular Bursting cells for oscillatory behaviour** |
14 | 6 | Padraig Gleeson | |
15 | 6 | Padraig Gleeson | **Prevalence of gap junctions** |
16 | 6 | Padraig Gleeson | |
17 | 6 | Padraig Gleeson | **High current threshold for deep pyramidal firing** |
18 | 6 | Padraig Gleeson | |
19 | 6 | Padraig Gleeson | **Not tested with external synaptic input** |
20 | 6 | Padraig Gleeson | |
21 | 1 | Padraig Gleeson | ### Limitations of the conversion of the model to NEURON |
22 | 1 | Padraig Gleeson | |
23 | 1 | Padraig Gleeson | It is useful to read the [notes on conversion of this model to NEURON from Fortran](http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=82894&file=\nrntraub\README) by Tom Morse and Michael Hines |
24 | 1 | Padraig Gleeson | |
25 | 7 | Helena Głąbska | **Slightly different method of running the simulation** (e.g. in Neuron information about spike is sent immediately, in Fortran every 0.1 ms ) |
26 | 7 | Helena Głąbska | |
27 | 7 | Helena Głąbska | **Diffrent behaviour of NMDA synapse when thalamus is disconnected** (some bug in Fortran version?) |
28 | 7 | Helena Głąbska | |
29 | 7 | Helena Głąbska | In Fortran code: |
30 | 7 | Helena Głąbska | |
31 | 7 | Helena Głąbska | z = 0.d0 ! thalamus disconnected |
32 | 7 | Helena Głąbska | gAMPA_TCR_to_suppyrRS = z * gAMPA_TCR_to_suppyrRS |
33 | 7 | Helena Głąbska | gNMDA_TCR_to_suppyrRS = z * gNMDA_TCR_to_suppyrRS |
34 | 7 | Helena Głąbska | gAMPA_TCR_to_suppyrFRB = z * gAMPA_TCR_to_suppyrFRB |
35 | 7 | Helena Głąbska | gNMDA_TCR_to_suppyrFRB = z * gNMDA_TCR_to_suppyrFRB |
36 | 7 | Helena Głąbska | ... |
37 | 7 | Helena Głąbska | |
38 | 7 | Helena Głąbska | gNMDA\_TCR\_to\_suppyrFRB becomes 0. Then when you compute NMDA activation |
39 | 7 | Helena Głąbska | from TCR to suppyrFRB |
40 | 7 | Helena Głąbska | |
41 | 7 | Helena Głąbska | .... |
42 | 7 | Helena Głąbska | |
43 | 7 | Helena Głąbska | ! NMDA part |
44 | 7 | Helena Głąbska | if (delta.le.5.d0) then |
45 | 7 | Helena Głąbska | gNMDA_suppyrFRB(k,L) = gNMDA_suppyrFRB(k,L) + |
46 | 7 | Helena Głąbska | & gNMDA_TCR_to_suppyrFRB * delta * 0.2d0 |
47 | 7 | Helena Głąbska | else |
48 | 7 | Helena Głąbska | dexparg = (delta - 5.d0)/tauNMDA_TCR_to_suppyrFRB |
49 | 7 | Helena Głąbska | if (dexparg.le.5.d0) then |
50 | 7 | Helena Głąbska | z = dexptablesmall (int(dexparg*1000.d0)) |
51 | 7 | Helena Głąbska | else if (dexparg.le.100.d0) then |
52 | 7 | Helena Głąbska | z = dexptablebig (int(dexparg*10.d0)) |
53 | 7 | Helena Głąbska | else |
54 | 7 | Helena Głąbska | z = 0.d0 |
55 | 7 | Helena Głąbska | endif |
56 | 7 | Helena Głąbska | gNMDA_suppyrFRB(k,L) = gNMDA_suppyrFRB(k,L) + |
57 | 7 | Helena Głąbska | & gNMDA_TCR_to_suppyrFRB * z |
58 | 7 | Helena Głąbska | endif |
59 | 7 | Helena Głąbska | c Test for NMDA saturation |
60 | 7 | Helena Głąbska | z = NMDA_saturation_fact * gNMDA_TCR_to_suppyrFRB |
61 | 7 | Helena Głąbska | if (gNMDA_suppyrFRB(k,L).gt.z) |
62 | 7 | Helena Głąbska | & gNMDA_suppyrFRB(k,L) = z |
63 | 7 | Helena Głąbska | ! end NMDA part |
64 | 7 | Helena Głąbska | .... |
65 | 7 | Helena Głąbska | |
66 | 7 | Helena Głąbska | It seems that this piece of code, more precisely the last three lines: |
67 | 7 | Helena Głąbska | |
68 | 7 | Helena Głąbska | <pre> |
69 | 7 | Helena Głąbska | c Test for NMDA saturation |
70 | 7 | Helena Głąbska | z = NMDA\_saturation\_fact \* gNMDA\_TCR\_to\_suppyrFRB |
71 | 7 | Helena Głąbska | if (gNMDA\_suppyrFRB(k,L).gt.z) |
72 | 7 | Helena Głąbska | & gNMDA\_suppyrFRB(k,L) = z |
73 | 7 | Helena Głąbska | |
74 | 7 | Helena Głąbska | </pre> |
75 | 7 | Helena Głąbska | kills completely NMDA activation of suppyrFRB cells from all the other populations, not just TCR (except from nontuftRS cells, nontuftRS - suppyrFRB NMDA conductance is calculated after this block). In Neuron version there is no such behaviour. |
76 | 7 | Helena Głąbska | |
77 | 7 | Helena Głąbska | An **updated version** of this model in NEURON is being worked on [here](https://github.com/hglabska/Thalamocortical/tree/Neuron_version_simplified_groucho_file/Neuron). The version allows to modify easily the network, e.g. to add new population (version commited on 26 June 2013 and later), replace one template by another e.g. tuftIB Traub cell by [Hay cell](http://senselab.med.yale.edu/ModelDb/ShowModel.asp?model=139653) ( version commited on 04 July 2013 or later). The main groucho.hoc file is simpler and much shorter (about 10 times), parameters like AMPA, GABA, NMDA conductances, connections between populations are defined in separated files. |
78 | 3 | Padraig Gleeson | |
79 | 8 | Helena Głąbska | #### Tests for [Neuron](http://senselab.med.yale.edu/ModelDb/ShowModel.asp?model=82894) and [Fortran](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) version . Trying to reproduce results from [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801) |
80 | 8 | Helena Głąbska | |
81 | 8 | Helena Głąbska | Remark: In Fortran version, compilations flag -finit-local-zero , seems to be important. |
82 | 8 | Helena Głąbska | |
83 | 8 | Helena Głąbska | ##### Single Cell |
84 | 8 | Helena Głąbska | |
85 | 8 | Helena Głąbska | TO DO |
86 | 8 | Helena Głąbska | |
87 | 8 | Helena Głąbska | ##### Figure 2 |
88 | 8 | Helena Głąbska | |
89 | 8 | Helena Głąbska | TO DO |
90 | 8 | Helena Głąbska | |
91 | 8 | Helena Głąbska | ##### Figure 7 |
92 | 8 | Helena Głąbska | Figure 7 from the [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801) |
93 | 8 | Helena Głąbska | |
94 | 8 | Helena Głąbska | ![](7paper.png) |
95 | 8 | Helena Głąbska | |
96 | 8 | Helena Głąbska | **7A** |
97 | 8 | Helena Głąbska | |
98 | 8 | Helena Głąbska | In [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801) they raported about consisting of 17 burst complexes that terminate spontaneously. The last 5 of the bursts are shown. Results from the [Fortran](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) version are very similar but only 14 bursts appears. In Neuron version the result is much different. |
99 | 8 | Helena Głąbska | |
100 | 8 | Helena Głąbska | ![](7A_small_labels.png) |
101 | 8 | Helena Głąbska | |
102 | 8 | Helena Głąbska | You can download the data for Fig 7A from Fortran and Neuron simulation. [Fortran data](http://figshare.com/articles/7A/855456) and [Neuron data](http://figshare.com/articles/7A_Neuron_use_traubexac_0/855486) |
103 | 8 | Helena Głąbska | |
104 | 8 | Helena Głąbska | **7B** |
105 | 8 | Helena Głąbska | |
106 | 8 | Helena Głąbska | TO DO |
107 | 8 | Helena Głąbska | |
108 | 8 | Helena Głąbska | **7C** |
109 | 8 | Helena Głąbska | |
110 | 8 | Helena Głąbska | TO DO |
111 | 8 | Helena Głąbska | |
112 | 8 | Helena Głąbska | **7D** |
113 | 8 | Helena Głąbska | |
114 | 8 | Helena Głąbska | TO DO |
115 | 8 | Helena Głąbska | |
116 | 1 | Padraig Gleeson | ### Limitations of the conversion of the model to MOOSE |
117 | 1 | Padraig Gleeson | |
118 | 1 | Padraig Gleeson | TODO… |
119 | 1 | Padraig Gleeson | |
120 | 1 | Padraig Gleeson | ### Limitations of the conversion of the model to NeuroML |
121 | 1 | Padraig Gleeson | |
122 | 5 | Padraig Gleeson | **Optimal spatial discretisation for each cell needs to be investigated** |
123 | 5 | Padraig Gleeson | |
124 | 3 | Padraig Gleeson | Important details of the process of conversion of the cell models to NeuroML, and matching cell behaviour across simulators is present in the [2010 NeuroML paper](http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000815). |
125 | 1 | Padraig Gleeson | |
126 | 5 | Padraig Gleeson | The spatial discretisation of the cells influenced precise spike timing. Changing the number of compartments/points used to calculate the membrane potential changed the timing of the cell (e.g. changing the value of nseg in NEURON on all sections). See below for an example of how 3 cells with differing numbers of compartments converged at different rates. A) Nucleus reticularis thalami (nRT) cell; B) Superficial Low Threshold spiking (LTS) cell; C) Layer 6 Non-tufted Regular Spiking pyramidal cell. Traces for NEURON (black) and MOOSE (green) and GENESIS (red). |
127 | 1 | Padraig Gleeson | |
128 | 5 | Padraig Gleeson | ![](http://www.opensourcebrain.org/attachments/download/114/converge.png) |
129 | 5 | Padraig Gleeson | |
130 | 1 | Padraig Gleeson | **NMDA conductance wave form** |
131 | 5 | Padraig Gleeson | |
132 | 5 | Padraig Gleeson | The NMDA synapse model used in the network has an unconventional form, with a scaling factor rising lineally between 0 and 5ms, and decaying exponentially. This can probably be approximated by a double exponential synapse (coupled with v & [Mg] dependent blocking mechanism). |
133 | 5 | Padraig Gleeson | |
134 | 1 | Padraig Gleeson | **Firing rate vs. injected current of cells** |
135 | 5 | Padraig Gleeson | |
136 | 5 | Padraig Gleeson | Many of the cells show unusual F/I curves. |
137 | 5 | Padraig Gleeson | |
138 | 1 | Padraig Gleeson | ![](/attachments/download/113/ifcurve.png) |
139 | 1 | Padraig Gleeson | |
140 | 5 | Padraig Gleeson | **Support in NeuroML** |
141 | 5 | Padraig Gleeson | |
142 | 5 | Padraig Gleeson | All model elements from the neuroConstruct generated network can be exported to valid NeuroML v1.8.1. |
143 | 5 | Padraig Gleeson | |
144 | 5 | Padraig Gleeson | Model can be exported to [(mostly valid) NeuroML 2](https://github.com/OpenSourceBrain/Thalamocortical/tree/master/neuroConstruct/generatedNeuroML2), but there is not yet an application that can handle such detailed NML2 models (but we’re [working on it](https://github.com/NeuroML/org.neuroml.export/blob/development/src/main/java/org/neuroml/export/neuron/NeuronWriter.java)). |