Edit History

Known issues » History » Version 8

Helena Głąbska, 30 Apr 2014 14:57
few more words about Traub model and trying to reproduce results from the paper, to be continued ...

1 1 Padraig Gleeson
Known issues with Traub et al 2005.
2 1 Padraig Gleeson
-----------------------------------
3 1 Padraig Gleeson
4 1 Padraig Gleeson
This is a quite complex and detailed model and as discussed in the [original paper](http://www.ncbi.nlm.nih.gov/pubmed/15525801?dopt=Abstract)
5 1 Padraig Gleeson
6 1 Padraig Gleeson
> Any model, even of a small bit of cortex, is subject to difficulties and hazards: limited data, large numbers of parameters, criticisms that models with complexity comparable to the modeled system cannot be scientifically useful, the expense and slowness of the necessary computations, and serious uncertainties as to how a complex model can be compared with experiment and shown to be predictive.
7 1 Padraig Gleeson
> The above difficulties and hazards are too real to be dismissed readily. In our opinion, the only way to proceed is through a state of denial that any of the difficulties need be fatal. The reader must then judge whether the results, preliminary as they must be, help our understanding.
8 1 Padraig Gleeson
9 1 Padraig Gleeson
Even the published Fortran version of this model was acknowledged to be incomplete. Each conversion of this model will deviate to a small or large extent from this version.
10 1 Padraig Gleeson
11 6 Padraig Gleeson
### Questions about physiological properties of model
12 6 Padraig Gleeson
13 6 Padraig Gleeson
**Dependence on Fast Regular Bursting cells for oscillatory behaviour**
14 6 Padraig Gleeson
15 6 Padraig Gleeson
**Prevalence of gap junctions**
16 6 Padraig Gleeson
17 6 Padraig Gleeson
**High current threshold for deep pyramidal firing**
18 6 Padraig Gleeson
19 6 Padraig Gleeson
**Not tested with external synaptic input**
20 6 Padraig Gleeson
21 1 Padraig Gleeson
### Limitations of the conversion of the model to NEURON
22 1 Padraig Gleeson
23 1 Padraig Gleeson
It is useful to read the [notes on conversion of this model to NEURON from Fortran](http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=82894&file=\nrntraub\README) by Tom Morse and Michael Hines
24 1 Padraig Gleeson
25 7 Helena Głąbska
**Slightly different method of running the simulation** (e.g. in Neuron information about spike is sent immediately, in Fortran every 0.1 ms )
26 7 Helena Głąbska
27 7 Helena Głąbska
**Diffrent behaviour of NMDA synapse when thalamus is disconnected** (some bug in Fortran version?)
28 7 Helena Głąbska
29 7 Helena Głąbska
In Fortran code:
30 7 Helena Głąbska
31 7 Helena Głąbska
     z = 0.d0  ! thalamus disconnected
32 7 Helena Głąbska
     gAMPA_TCR_to_suppyrRS = z * gAMPA_TCR_to_suppyrRS
33 7 Helena Głąbska
     gNMDA_TCR_to_suppyrRS = z * gNMDA_TCR_to_suppyrRS
34 7 Helena Głąbska
     gAMPA_TCR_to_suppyrFRB = z * gAMPA_TCR_to_suppyrFRB
35 7 Helena Głąbska
     gNMDA_TCR_to_suppyrFRB = z * gNMDA_TCR_to_suppyrFRB
36 7 Helena Głąbska
    ...
37 7 Helena Głąbska
38 7 Helena Głąbska
gNMDA\_TCR\_to\_suppyrFRB becomes 0. Then when you compute NMDA activation
39 7 Helena Głąbska
from TCR to suppyrFRB
40 7 Helena Głąbska
41 7 Helena Głąbska
    ....
42 7 Helena Głąbska
43 7 Helena Głąbska
    ! NMDA part
44 7 Helena Głąbska
            if (delta.le.5.d0) then
45 7 Helena Głąbska
           gNMDA_suppyrFRB(k,L) = gNMDA_suppyrFRB(k,L) +
46 7 Helena Głąbska
         &  gNMDA_TCR_to_suppyrFRB * delta * 0.2d0
47 7 Helena Głąbska
            else
48 7 Helena Głąbska
           dexparg = (delta - 5.d0)/tauNMDA_TCR_to_suppyrFRB
49 7 Helena Głąbska
              if (dexparg.le.5.d0) then
50 7 Helena Głąbska
              z = dexptablesmall (int(dexparg*1000.d0))
51 7 Helena Głąbska
             else if (dexparg.le.100.d0) then
52 7 Helena Głąbska
              z = dexptablebig (int(dexparg*10.d0))
53 7 Helena Głąbska
             else
54 7 Helena Głąbska
              z = 0.d0
55 7 Helena Głąbska
             endif
56 7 Helena Głąbska
           gNMDA_suppyrFRB(k,L) = gNMDA_suppyrFRB(k,L) +
57 7 Helena Głąbska
         &  gNMDA_TCR_to_suppyrFRB * z
58 7 Helena Głąbska
            endif
59 7 Helena Głąbska
    c Test for NMDA saturation
60 7 Helena Głąbska
           z = NMDA_saturation_fact * gNMDA_TCR_to_suppyrFRB
61 7 Helena Głąbska
           if (gNMDA_suppyrFRB(k,L).gt.z)
62 7 Helena Głąbska
         &  gNMDA_suppyrFRB(k,L) = z
63 7 Helena Głąbska
    ! end NMDA part
64 7 Helena Głąbska
    ....
65 7 Helena Głąbska
66 7 Helena Głąbska
It seems that this piece of code, more precisely the last three lines:
67 7 Helena Głąbska
68 7 Helena Głąbska
<pre>
69 7 Helena Głąbska
c Test for NMDA saturation
70 7 Helena Głąbska
 z = NMDA\_saturation\_fact \* gNMDA\_TCR\_to\_suppyrFRB
71 7 Helena Głąbska
 if (gNMDA\_suppyrFRB(k,L).gt.z)
72 7 Helena Głąbska
 & gNMDA\_suppyrFRB(k,L) = z
73 7 Helena Głąbska
74 7 Helena Głąbska
</pre>
75 7 Helena Głąbska
kills completely NMDA activation of suppyrFRB cells from all the other populations, not just TCR (except from nontuftRS cells, nontuftRS - suppyrFRB NMDA conductance is calculated after this block). In Neuron version there is no such behaviour.
76 7 Helena Głąbska
77 7 Helena Głąbska
An **updated version** of this model in NEURON is being worked on [here](https://github.com/hglabska/Thalamocortical/tree/Neuron_version_simplified_groucho_file/Neuron). The version allows to modify easily the network, e.g. to add new population (version commited on 26 June 2013 and later), replace one template by another e.g. tuftIB Traub cell by [Hay cell](http://senselab.med.yale.edu/ModelDb/ShowModel.asp?model=139653) ( version commited on 04 July 2013 or later). The main groucho.hoc file is simpler and much shorter (about 10 times), parameters like AMPA, GABA, NMDA conductances, connections between populations are defined in separated files.
78 3 Padraig Gleeson
79 8 Helena Głąbska
#### Tests for [Neuron](http://senselab.med.yale.edu/ModelDb/ShowModel.asp?model=82894) and [Fortran](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) version . Trying to reproduce results from [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801)
80 8 Helena Głąbska
81 8 Helena Głąbska
Remark: In Fortran version, compilations flag -finit-local-zero , seems to be important.
82 8 Helena Głąbska
83 8 Helena Głąbska
##### Single Cell
84 8 Helena Głąbska
85 8 Helena Głąbska
TO DO
86 8 Helena Głąbska
87 8 Helena Głąbska
##### Figure 2
88 8 Helena Głąbska
89 8 Helena Głąbska
TO DO
90 8 Helena Głąbska
91 8 Helena Głąbska
##### Figure 7 
92 8 Helena Głąbska
Figure 7 from the [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801)
93 8 Helena Głąbska
94 8 Helena Głąbska
![](7paper.png)
95 8 Helena Głąbska
96 8 Helena Głąbska
**7A**
97 8 Helena Głąbska
98 8 Helena Głąbska
In [article](http://www.ncbi.nlm.nih.gov/pubmed/15525801) they raported about consisting of 17 burst complexes that terminate spontaneously. The last 5 of the bursts are shown. Results from the [Fortran](https://github.com/hglabska/Thalamocortical/tree/master/Fortran_ifc) version are very similar but only 14 bursts appears. In Neuron version the result is much different.
99 8 Helena Głąbska
100 8 Helena Głąbska
![](7A_small_labels.png)
101 8 Helena Głąbska
102 8 Helena Głąbska
You can download the data for Fig 7A from Fortran and Neuron simulation. [Fortran data](http://figshare.com/articles/7A/855456) and [Neuron data](http://figshare.com/articles/7A_Neuron_use_traubexac_0/855486)
103 8 Helena Głąbska
104 8 Helena Głąbska
**7B**
105 8 Helena Głąbska
106 8 Helena Głąbska
TO DO
107 8 Helena Głąbska
108 8 Helena Głąbska
**7C**
109 8 Helena Głąbska
110 8 Helena Głąbska
TO DO
111 8 Helena Głąbska
112 8 Helena Głąbska
**7D**
113 8 Helena Głąbska
114 8 Helena Głąbska
TO DO
115 8 Helena Głąbska
116 1 Padraig Gleeson
### Limitations of the conversion of the model to MOOSE
117 1 Padraig Gleeson
118 1 Padraig Gleeson
TODO…
119 1 Padraig Gleeson
120 1 Padraig Gleeson
### Limitations of the conversion of the model to NeuroML
121 1 Padraig Gleeson
122 5 Padraig Gleeson
**Optimal spatial discretisation for each cell needs to be investigated**
123 5 Padraig Gleeson
124 3 Padraig Gleeson
Important details of the process of conversion of the cell models to NeuroML, and matching cell behaviour across simulators is present in the [2010 NeuroML paper](http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000815).
125 1 Padraig Gleeson
126 5 Padraig Gleeson
The spatial discretisation of the cells influenced precise spike timing. Changing the number of compartments/points used to calculate the membrane potential changed the timing of the cell (e.g. changing the value of nseg in NEURON on all sections). See below for an example of how 3 cells with differing numbers of compartments converged at different rates. A) Nucleus reticularis thalami (nRT) cell; B) Superficial Low Threshold spiking (LTS) cell; C) Layer 6 Non-tufted Regular Spiking pyramidal cell. Traces for NEURON (black) and MOOSE (green) and GENESIS (red).
127 1 Padraig Gleeson
128 5 Padraig Gleeson
![](http://www.opensourcebrain.org/attachments/download/114/converge.png)
129 5 Padraig Gleeson
130 1 Padraig Gleeson
**NMDA conductance wave form**
131 5 Padraig Gleeson
132 5 Padraig Gleeson
The NMDA synapse model used in the network has an unconventional form, with a scaling factor rising lineally between 0 and 5ms, and decaying exponentially. This can probably be approximated by a double exponential synapse (coupled with v & [Mg] dependent blocking mechanism).
133 5 Padraig Gleeson
134 1 Padraig Gleeson
**Firing rate vs. injected current of cells**
135 5 Padraig Gleeson
136 5 Padraig Gleeson
Many of the cells show unusual F/I curves.
137 5 Padraig Gleeson
138 1 Padraig Gleeson
![](/attachments/download/113/ifcurve.png)
139 1 Padraig Gleeson
140 5 Padraig Gleeson
**Support in NeuroML**
141 5 Padraig Gleeson
142 5 Padraig Gleeson
All model elements from the neuroConstruct generated network can be exported to valid NeuroML v1.8.1.
143 5 Padraig Gleeson
144 5 Padraig Gleeson
Model can be exported to [(mostly valid) NeuroML 2](https://github.com/OpenSourceBrain/Thalamocortical/tree/master/neuroConstruct/generatedNeuroML2), but there is not yet an application that can handle such detailed NML2 models (but we’re [working on it](https://github.com/NeuroML/org.neuroml.export/blob/development/src/main/java/org/neuroml/export/neuron/NeuronWriter.java)).