Edit History

Wiki » History » Version 3

Ramon Martinez, 26 Jun 2014 09:36

1 2 Ramon Martinez
##  Network models of V1
2 1 Padraig Gleeson
3 1 Padraig Gleeson
This project will be used to test implementations in PyNN (and eventually NeuroML) of published models of primary visual cortex (V1) based on spiking point neurons.
4 1 Padraig Gleeson
5 1 Padraig Gleeson
An initial focus will be on pubmed:14614078, but other models investigated will include pubmed:19477158 and pubmed:22681694.
6 1 Padraig Gleeson
7 1 Padraig Gleeson
This project is part of the [INCF Google Summer of Code 2014](http://incf.org/gsoc/2014).
8 2 Ramon Martinez
9 2 Ramon Martinez
10 2 Ramon Martinez
### Troyer Model
11 2 Ramon Martinez
Here I will describe breifly the implementation of Troyer et al (1998). 
12 2 Ramon Martinez
13 2 Ramon Martinez
In order to run this model is necessary to first install [git](http://git-scm.com/) and [PyNN](http://neuralensemble.org/PyNN/) and the appropriate simulator.
14 2 Ramon Martinez
15 3 Ramon Martinez
After that you can clone directly from git using:
16 3 Ramon Martinez
17 3 Ramon Martinez
~~~
18 3 Ramon Martinez
git clone https://github.com/OpenSourceBrain/V1NetworkModels.git
19 3 Ramon Martinez
~~~
20 3 Ramon Martinez
21 3 Ramon Martinez
As the project stands at this moment the workflow can be described in two steps. First there is a script `produces_lgn_spikes.py` that creates the spike train for the cells in the Lateral Geniculate Nucleus (LGN). After the spikes are created they are stores in pickled format along with their respective positions to identify them downstream in the worflow. After we have the spikes train the file `lgn.py` uses the **PyNN's**  SpikeSourceArray to create an LGN array with the spikes that we have produced in the other file. Using the stored positions we can,  in the same file,  create the thalamo-cortical connectivity using a Gabor-like sampling mechanism. The next step is to create the cortical-cortical connections with the correlations between cortical cells' receptive fields.