Edit History

Wiki » History » Version 33

Vitor Chaud, 30 Apr 2014 14:57

1 1 Padraig Gleeson
Introduction
2 7 Padraig Gleeson
------------
3 1 Padraig Gleeson
4 25 Vitor Chaud
This project deals with the re-implementation of Izhikevich’s spiking neuron model (See [here](http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1257420)). Currently, this model is supported by NeuroML 2 and PyNN (Neuron and NEST backends). Simulation results are in general equal or similar to those shown in the original publication (see Fig. 1 of [Izhikevich 2004](http://www.izhikevich.org/publications/whichmod.htm)). However, few model features are difficult to reproduce due to particularities regarding model description and/or backend implementations, as further described below.
5 1 Padraig Gleeson
6 8 Padraig Gleeson
### Installation
7 7 Padraig Gleeson
8 22 Vitor Chaud
To get local clone of this project [Install Git](http://www.opensourcebrain.org/projects/gitintro/wiki/Wiki), go to the directory in which the project will be cloned and type:
9 1 Padraig Gleeson
10 22 Vitor Chaud
    > git clone https://github.com/OpenSourceBrain/IzhikevichModel.git
11 22 Vitor Chaud
12 30 Vitor Chaud
In order to install PyNN see http://neuralensemble.org/trac/PyNN/wiki/Installation. Preferably, use the latest v0.8 version from [GitHub](https://github.com/NeuralEnsemble/PyNN). At the moment, the model is supported by Neuron and NEST backend simulators.
13 30 Vitor Chaud
14 31 Vitor Chaud
To perform simulations using [NeuroML2](https://github.com/NeuroML/jNeuroML) and [LEMS](https://github.com/LEMS/jLEMS) you may install a pre-compiled package named jNeuroML as described [here](http://sourceforge.net/mailarchive/forum.php?thread_name=51C96757.8090601%40ucl.ac.uk&forum_name=neuroml-technology).
15 31 Vitor Chaud
16 8 Padraig Gleeson
### Versions of the project
17 7 Padraig Gleeson
18 7 Padraig Gleeson
The original model in [MATLAB format](http://izhikevich.org/publications/figure1.m) has been converted to a number of other formats.
19 7 Padraig Gleeson
20 20 Vitor Chaud
#### PyNN
21 1 Padraig Gleeson
22 30 Vitor Chaud
##### Simulating Fig. 1 protocol in PyNN
23 1 Padraig Gleeson
24 28 Vitor Chaud
First, go to the PyNN subdirectory in your working directory:
25 28 Vitor Chaud
26 1 Padraig Gleeson
    > cd IzhikevichModel/PyNN/
27 20 Vitor Chaud
28 29 Vitor Chaud
Then, type the following command to run a simulation using Neuron:
29 1 Padraig Gleeson
30 1 Padraig Gleeson
    > python izhikevich2004.py neuron
31 28 Vitor Chaud
32 29 Vitor Chaud
… or to run a simulation using NEST:
33 28 Vitor Chaud
34 28 Vitor Chaud
    > python izhikevich2004.py nest
35 7 Padraig Gleeson
36 7 Padraig Gleeson
#### NeuroML 2
37 1 Padraig Gleeson
38 31 Vitor Chaud
First, go to the NeuroML2 subdirectory in your working directory:
39 1 Padraig Gleeson
40 31 Vitor Chaud
    > cd IzhikevichModel/NeuroML2/
41 31 Vitor Chaud
42 31 Vitor Chaud
Then, type the following command to run a simulation using LEMS:
43 31 Vitor Chaud
44 31 Vitor Chaud
    > ../../jNeuroMLJar/jnml LEMS_WhichModel.xml
45 31 Vitor Chaud
46 1 Padraig Gleeson
The XML for an Izhikevich model in NeuroML v2.0 is below:
47 1 Padraig Gleeson
48 1 Padraig Gleeson
    <code class="xml">
49 1 Padraig Gleeson
    <izhikevichCell id="TonicSpiking" v0 = "-70mV" thresh = "30mV" a ="0.02" b = "0.2" c = "-65.0" d = "6" Iamp="0" Idel="0ms" Idur="2000ms"/></code>
50 1 Padraig Gleeson
51 1 Padraig Gleeson
For full examples of single cells see [TonicSpiking](/projects/izhikevichmodel/repository/entry/neuroConstruct/cellMechanisms/TonicSpiking/TonicSpiking.nml) or [PhasicBursting](/projects/izhikevichmodel/repository/entry/neuroConstruct/cellMechanisms/PhasicBursting/PhasicBursting.nml)
52 8 Padraig Gleeson
53 32 Vitor Chaud
Comparison to original model behavior
54 32 Vitor Chaud
-------------------------------------
55 8 Padraig Gleeson
56 8 Padraig Gleeson
table{border:1px solid black}.
57 26 Vitor Chaud
{background:\#ddd}. |**Model**|**Label** | **NeuroML 2** |**pyNN.neuron**| **pyNN.nest**|
58 26 Vitor Chaud
|Tonic spiking | &nbsp;&nbsp;&nbsp;A |(a) | &nbsp;&nbsp;&nbsp;(a) | &nbsp;&nbsp;&nbsp;(a) |
59 26 Vitor Chaud
|Phasic spiking| &nbsp;&nbsp;&nbsp;B |(a) | &nbsp;&nbsp;&nbsp;(a) |&nbsp;&nbsp;&nbsp;(a) |
60 26 Vitor Chaud
|Tonic bursting| &nbsp;&nbsp;&nbsp;C |(b) | &nbsp;&nbsp;&nbsp;(b) |&nbsp;&nbsp;&nbsp;(b) |
61 26 Vitor Chaud
|Phasic bursting| &nbsp;&nbsp;&nbsp;D |(a) | &nbsp;&nbsp;&nbsp;(a) |&nbsp;&nbsp;&nbsp;(a) |
62 26 Vitor Chaud
|Mixed mode| &nbsp;&nbsp;&nbsp;E |(a) | &nbsp;&nbsp;&nbsp;(a) |&nbsp;&nbsp;&nbsp;(a) |
63 26 Vitor Chaud
|Spike freq. adapt.| &nbsp;&nbsp;&nbsp;F |(a) | &nbsp;&nbsp;&nbsp;(a) |&nbsp;&nbsp;&nbsp;(a) |
64 26 Vitor Chaud
|Class 1 excitable| &nbsp;&nbsp;&nbsp;G |(a, e)| &nbsp;&nbsp;&nbsp;(d, e) | &nbsp;&nbsp;&nbsp;(e) |
65 26 Vitor Chaud
|Class 2 excitable| &nbsp;&nbsp;&nbsp;H |©| &nbsp;&nbsp;&nbsp;(d) | &nbsp;&nbsp;&nbsp;(g) |
66 26 Vitor Chaud
|Spike latency | &nbsp;&nbsp;&nbsp;I |(b)| &nbsp;&nbsp;&nbsp;(b) |&nbsp;&nbsp;&nbsp;(b) |
67 26 Vitor Chaud
|Subthresh. osc.| &nbsp;&nbsp;&nbsp;J |(a)| &nbsp;&nbsp;&nbsp;(a) |&nbsp;&nbsp;&nbsp;(a) |
68 26 Vitor Chaud
|Resonator| &nbsp;&nbsp;&nbsp;K |(a)| &nbsp;&nbsp;&nbsp;(a) |&nbsp;&nbsp;&nbsp;(a) |
69 26 Vitor Chaud
|Integrator| &nbsp;&nbsp;&nbsp;L |(a, e)| &nbsp;&nbsp;&nbsp;(e) |&nbsp;&nbsp;&nbsp;(e) |
70 26 Vitor Chaud
|Rebound spike| &nbsp;&nbsp;&nbsp;M |(a)| &nbsp;&nbsp;&nbsp;(a) | &nbsp;&nbsp;&nbsp;(a) |
71 26 Vitor Chaud
|Rebound burst| &nbsp;&nbsp;&nbsp;N |(a)| &nbsp;&nbsp;&nbsp;(a) |&nbsp;&nbsp;&nbsp;(a) |
72 26 Vitor Chaud
|Threshold variability| &nbsp;&nbsp;&nbsp;O |(a)| &nbsp;&nbsp;&nbsp;(a) |&nbsp;&nbsp;&nbsp;(a) |
73 26 Vitor Chaud
|Bistability| &nbsp;&nbsp;&nbsp;P |(b)| &nbsp;&nbsp;&nbsp;(b) | &nbsp;&nbsp;&nbsp;(b) |
74 26 Vitor Chaud
|Depolarizing after-potential| &nbsp;&nbsp;&nbsp;Q |(b)| &nbsp;&nbsp;&nbsp;(b) |&nbsp;&nbsp;&nbsp;(b) |
75 26 Vitor Chaud
|Accomodation| &nbsp;&nbsp;&nbsp;R |(a, f)| &nbsp;&nbsp;&nbsp;(d)|&nbsp;&nbsp;&nbsp;(f)|
76 26 Vitor Chaud
|Inhibition-induced spiking| &nbsp;&nbsp;&nbsp;S |(b)| &nbsp;&nbsp;&nbsp;(b)|&nbsp;&nbsp;&nbsp;(b)|
77 26 Vitor Chaud
|Inhibition-induced bursting| &nbsp;&nbsp;&nbsp;T |(b) | &nbsp;&nbsp;&nbsp;(b)|&nbsp;&nbsp;&nbsp;(b)|
78 16 Vitor Chaud
79 26 Vitor Chaud
(a) Same behavior
80 26 Vitor Chaud
(b) Similar behavior when slightly modifying parameters. See the table below.
81 26 Vitor Chaud
© Similar but not identical behavior (different number of spikes in the stimulus time frame)
82 19 Vitor Chaud
(d) Not yet implemented. Need ramp injected current. See https://github.com/NeuralEnsemble/PyNN/issues/257
83 18 Vitor Chaud
(e) Requires an alternative model implementation since the model parameterization is different in the original Matlab code. In NeuroML new ComponentType [generalizedIzhikevichCell](https://github.com/OpenSourceBrain/IzhikevichModel/blob/master/NeuroML2/GeneralizedIzhikevichCell.xml) was created.
84 1 Padraig Gleeson
(f) Requires an alternative model implementation since the model parameterization is different in the original Matlab code. In NeuroML new ComponentType [accomodationIzhikevichCell](https://github.com/OpenSourceBrain/IzhikevichModel/blob/master/NeuroML2/GeneralizedIzhikevichCell.xml) was created.
85 1 Padraig Gleeson
(g) Could not reproduce model behavior
86 27 Vitor Chaud
87 32 Vitor Chaud
### Parameter changes to adequate model behavior
88 24 Vitor Chaud
89 24 Vitor Chaud
table{border:1px solid black}.
90 24 Vitor Chaud
{background:\#ddd}. |**Model**| **Label** | **Parameter**|**Original value**|**New value**|
91 24 Vitor Chaud
|Spike latency | I | Amplitude of pulse current | 7.04 | 6.71 |
92 24 Vitor Chaud
|Bistability | P | Initial time of 2nd pulse | 216 | 208 |
93 24 Vitor Chaud
|Depolarizing after-potential | Q | b | 0.2 | 0.18 |
94 1 Padraig Gleeson
|Inhibition-induced spiking | S | Inhibition ending | 250 | 220 |
95 1 Padraig Gleeson
|Inhibition-induced bursting | T | d | ~~2.0 |~~0.7 |
96 32 Vitor Chaud
97 32 Vitor Chaud
Alternative implementations
98 32 Vitor Chaud
---------------------------
99 32 Vitor Chaud
100 32 Vitor Chaud
An alternative implementation of the Izhikevich model was created using [Moose](http://moose.sourceforge.net/). The code can be found [here](http://sourceforge.net/p/moose/code/4733/tree/moose/branches/buildQ/Demos/izhikevich/). There is a GUI in which the user chooses the model parameterization an visualizes the simulation results (see the figure below).
101 33 Vitor Chaud
102 33 Vitor Chaud
![](moose_gui.xcf)